Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,174)
  • Open Access

    ARTICLE

    Structural Design and Analysis of a Booster Arm Made of a Carbon Fiber Reinforced Epoxy Composite Material

    Songhua Hu*, Lixiong Sun, Hongying Xiong*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1083-1088, 2022, DOI:10.32604/fdmp.2022.019038 - 06 April 2022

    Abstract An analysis of a booster arm made of a carbon fiber reinforced epoxy composite material is conducted by means of a finite element analysis method. The mechanical properties are also determined through stretching and compression performance tests. It is found that the surface treatment of the fibers causes the silane coupling agent to undergo a chemical reaction on the surface of the glass fiber. The used material succeeds in producing significant vibrations damping (vibration attenuation effect is superior to that obtained with conventional alloy materials). More >

  • Open Access

    ARTICLE

    Study on the Thermal Performances of a New Type of Fabricated Thermally Insulating Decorative Wall Material

    Changlin Wang1,2,*, Yu Tang2, Xiao Shen3, Wenjing Sun2, Guanyong Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 919-932, 2022, DOI:10.32604/fdmp.2022.019036 - 06 April 2022

    Abstract This study proposes three possible keel-surface layer combinations to implement a new type of thermally insulating decorative wall system. A set of 8 samples has been studied. In particular, through theoretical calculations, simulations, and experimental verification, the influence of different types of connecting structures on the overall thermal performance of the wall system has been determined. It has been found that a proper combination of these elements can meet existing energy-saving standards and effectively reduce the energy loss caused by thermal bridges due to the installation of steel keels at the edges of integrated wall More >

  • Open Access

    ARTICLE

    Simulation Analysis of Ammonia Leakage and Dispersion in a Large-Scale Refrigeration System

    Jianlu Cheng1, Kaiyong Hu1,*, Jiang Shen1, Lu Jia1,2, Rui Niu1, Zhaoxian Yang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1049-1066, 2022, DOI:10.32604/fdmp.2022.019007 - 06 April 2022

    Abstract The use of ammonia in large-scale refrigeration systems (such as those used for a stadium) requires adequate ammonia leakage prevention mechanisms are put in place. In the present study, numerical simulations have been conducted to study the dispersion law in the ammonia machinery room of the refrigeration system for the 2022 Beijing Winter Olympics. The wind speed, and release location have been varied to investigate their effects on the dispersion profile. Different positions of the leakage points in the ammonia storage tank have been found to lead to different areas affected accordingly. In general, the More >

  • Open Access

    ARTICLE

    Analysis of Highway Asphalt Modified with Recycled Rubber and Waste Plastics

    Aimin Zhang, Mingzhi Lu*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 907-918, 2022, DOI:10.32604/fdmp.2022.018995 - 06 April 2022

    Abstract In this study, it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways. It is shown that the modified asphalt can meet the performance index requirements when the components are present with a certain proportion or relative ratio (1:3.5). The dispersion process of the masterbatch in base asphalt can effectively be implemented, with good results and a smaller mixing time. The proposed approach may be regarded as a good strategy to achieve energy savings and protection of the environment. More >

  • Open Access

    ARTICLE

    A Research on the Behavior of a Polyurethane Polymer Waterproof Material Used in Bridge Geotechnical Applications

    Yuzhuo Wang1,2, Zhichao Xu2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 897-906, 2022, DOI:10.32604/fdmp.2022.018972 - 06 April 2022

    Abstract Polyurethane is enjoying a widespread use as a polymer-based waterproof material in civil engineering In the present study we consider a temperature-sensitive waterproof and moisture-permeable polyurethane material (PTPE-PU) characterized by one or more phase transition temperatures (critical temperatures). Near the critical temperature, the waterproof and moisture permeability of polyurethane undergo abrupt changes. The related stability, thermal performance, water resistance, hydrostatic pressure, and moisture permeability are investigated here considering a PTPE-PU traditionally used in bridge geotechnical engineering. The results show that the moisture permeability of the coated bridge rock and soil undergo sudden variations near the More >

  • Open Access

    ARTICLE

    Modeling of Heat Transfer and Steam Condensation Inside a Horizontal Flattened Tube

    M. Gh. Mohammed Kamil1,*, M. S. Kassim1, R. A. Mahmood2,3, L. AZ Mahdi4

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 985-998, 2022, DOI:10.32604/fdmp.2022.018938 - 06 April 2022

    Abstract This work investigates the steam condensation phenomena in an air-cooled condenser. The considered horizontal flattened tube has a 30 mm hydraulic diameter, and its length is a function of the steam quality with a limit value between 0.95 and 0.05. The mass flow rate ranges from 4 to 40 kg/m2.s with a saturated temperature spanning an interval from 40°C to 80°C. A special approach has been implemented using the Engineering Equation Solver (EES) to solve a series of equations for the two-phase flow pattern and the related heat transfer coefficients. A wavy-stratified structure of the two-phase flow More >

  • Open Access

    ARTICLE

    A Novel Method for the Application of the ECMS (Equivalent Consumption Minimization Strategy) to Reduce Hydrogen Consumption in Fuel Cell Hybrid Electric Vehicles

    Wen Sun, Hao Liu, Ming Han, Ke Sun, Shuzhan Bai*, Guoxiang Li*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 867-882, 2022, DOI:10.32604/fdmp.2022.018923 - 06 April 2022

    Abstract Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society. In this context, this paper proposes a method to solve the problem related to the dependence of the so-called optimal equivalent factor (determined in the framework of the equivalent consumption minimum strategy-ECMS) on the working conditions. The simulation results show that under typical conditions (some representative cities being considered), the proposed strategy can maintain the power balance; for different initial battery’s states of charge (SOC), after the SOC stabilizes, the fuel consumption More >

  • Open Access

    ARTICLE

    Simulation of the Hydraulic Behavior of a Bionic-Structure Drip Irrigation Emitter

    Tianyu Xu1, Yanru Su1, Zhouming Su1, Shuteng Zhi1, Ennan Zheng1,*, Chengcheng Yan2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1169-1182, 2022, DOI:10.32604/fdmp.2022.018628 - 06 April 2022

    Abstract The bionic structure drip irrigation emitter (BSDE) is a new-type emitter, by which better hydraulic performances can be obtained. In the present work, twenty-five sets of orthogonal test schemes were implemented to analyze the influence of the geometric parameters of the flow channel on the hydraulic characteristics and energy dissipation efficiency of this emitter. Through numerical simulations and verification tests, the flow index and energy dissipation coefficient were obtained. According to the results, the flow index of the BSDE is 0.4757–0.5067. The energy dissipation coefficient under the pressure head of 5–15 m is 584–1701. The More >

  • Open Access

    ARTICLE

    Influence of Anthracite-to-Ilmenite-Ratio on Element Distribution in Titanium Slag Smelting in Large DC Furnaces

    Shihong Huang1, Ting Lei2, Yan Cui3, Zhifeng Nie4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 883-896, 2022, DOI:10.32604/fdmp.2022.018537 - 06 April 2022

    Abstract The distribution of titanium, carbon and associated elements (calcium, magnesium, silicon and aluminum) in a smelting process is studied by means of a chemical equilibrium calculation method for multiphase and multicomponent systems, and verified through comparison with production results. In particular, using the coexistence theory for titanium slag structures, the influence of the AIR (anthracite to ilmenite ratio) on the distribution of such elements is analyzed. The results show that the AIR can be adjusted to achieve a selective reduction of oxides in the melt. More >

  • Open Access

    ARTICLE

    An Investigation into the Behavior of Non-Isodense Particles in Chaotic Thermovibrational Flow

    Georgie Crewdson, Marcello Lappa*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 497-510, 2022, DOI:10.32604/fdmp.2022.020248 - 22 February 2022

    Abstract The ability to control the distribution of particles in a fluid is generally regarded as a factor of great importance in a variety of fields (manufacturing processes, biomedical applications, materials engineering and various particle separation processes, to cite a few). The present study considers the hitherto not yet addressed situation in which solid spherical particles are dispersed in a non-isothermal fluid undergoing turbulent vibrationally-induced convection (chaotic thermovibrational flow in a square cavity due to vibrations perpendicular to the imposed temperature difference). Although the possibility to use laminar thermovibrational flows (in microgravity) and turbulent flows of More >

Displaying 601-610 on page 61 of 1174. Per Page