Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Advanced Brain Tumor Segmentation in Magnetic Resonance Imaging via 3D U-Net and Generalized Gaussian Mixture Model-Based Preprocessing

    Khalil Ibrahim Lairedj1, Zouaoui Chama1, Amina Bagdaoui1, Samia Larguech2, Younes Menni3,4,*, Nidhal Becheikh5, Lioua Kolsi6,*, Badr M. Alshammari7

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2419-2443, 2025, DOI:10.32604/cmes.2025.069396 - 31 August 2025

    Abstract Brain tumor segmentation from Magnetic Resonance Imaging (MRI) supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans, making it a crucial yet challenging task. Supervised models such as 3D U-Net perform well in this domain, but their accuracy significantly improves with appropriate preprocessing. This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model (GGMM) to T1 contrast-enhanced MRI scans from the BraTS 2020 dataset. The Expectation-Maximization (EM) algorithm is employed to estimate parameters for four tissue classes, generating a More >

  • Open Access

    ARTICLE

    Enhancing 3D U-Net with Residual and Squeeze-and-Excitation Attention Mechanisms for Improved Brain Tumor Segmentation in Multimodal MRI

    Yao-Tien Chen1, Nisar Ahmad1,*, Khursheed Aurangzeb2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1197-1224, 2025, DOI:10.32604/cmes.2025.066580 - 31 July 2025

    Abstract Accurate and efficient brain tumor segmentation is essential for early diagnosis, treatment planning, and clinical decision-making. However, the complex structure of brain anatomy and the heterogeneous nature of tumors present significant challenges for precise anomaly detection. While U-Net-based architectures have demonstrated strong performance in medical image segmentation, there remains room for improvement in feature extraction and localization accuracy. In this study, we propose a novel hybrid model designed to enhance 3D brain tumor segmentation. The architecture incorporates a 3D ResNet encoder known for mitigating the vanishing gradient problem and a 3D U-Net decoder. Additionally, to… More > Graphic Abstract

    Enhancing 3D U-Net with Residual and Squeeze-and-Excitation Attention Mechanisms for Improved Brain Tumor Segmentation in Multimodal MRI

  • Open Access

    ARTICLE

    Brain Tumor Auto-Segmentation on Multimodal Imaging Modalities Using Deep Neural Network

    Elias Hossain1, Md. Shazzad Hossain2, Md. Selim Hossain3, Sabila Al Jannat4, Moontahina Huda5, Sameer Alsharif6, Osama S. Faragallah7, Mahmoud M. A. Eid8, Ahmed Nabih Zaki Rashed9,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4509-4523, 2022, DOI:10.32604/cmc.2022.025977 - 21 April 2022

    Abstract Due to the difficulties of brain tumor segmentation, this paper proposes a strategy for extracting brain tumors from three-dimensional Magnetic Resonance Image (MRI) and Computed Tomography (CT) scans utilizing 3D U-Net Design and ResNet50, taken after by conventional classification strategies. In this inquire, the ResNet50 picked up accuracy with 98.96%, and the 3D U-Net scored 97.99% among the different methods of deep learning. It is to be mentioned that traditional Convolutional Neural Network (CNN) gives 97.90% accuracy on top of the 3D MRI. In expansion, the image fusion approach combines the multimodal images and makes a fused… More >

  • Open Access

    ARTICLE

    MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks

    Juhong Tie1,2,*, Hui Peng2, Jiliu Zhou1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 427-445, 2021, DOI:10.32604/cmes.2021.014107 - 22 July 2021

    Abstract The main task of magnetic resonance imaging (MRI) automatic brain tumor segmentation is to automatically segment the brain tumor edema, peritumoral edema, endoscopic core, enhancing tumor core and nonenhancing tumor core from 3D MR images. Because the location, size, shape and intensity of brain tumors vary greatly, it is very difficult to segment these brain tumor regions automatically. In this paper, by combining the advantages of DenseNet and ResNet, we proposed a new 3D U-Net with dense encoder blocks and residual decoder blocks. We used dense blocks in the encoder part and residual blocks in… More >

Displaying 1-10 on page 1 of 4. Per Page