Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Brain Tumor Auto-Segmentation on Multimodal Imaging Modalities Using Deep Neural Network

    Elias Hossain1, Md. Shazzad Hossain2, Md. Selim Hossain3, Sabila Al Jannat4, Moontahina Huda5, Sameer Alsharif6, Osama S. Faragallah7, Mahmoud M. A. Eid8, Ahmed Nabih Zaki Rashed9,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4509-4523, 2022, DOI:10.32604/cmc.2022.025977

    Abstract Due to the difficulties of brain tumor segmentation, this paper proposes a strategy for extracting brain tumors from three-dimensional Magnetic Resonance Image (MRI) and Computed Tomography (CT) scans utilizing 3D U-Net Design and ResNet50, taken after by conventional classification strategies. In this inquire, the ResNet50 picked up accuracy with 98.96%, and the 3D U-Net scored 97.99% among the different methods of deep learning. It is to be mentioned that traditional Convolutional Neural Network (CNN) gives 97.90% accuracy on top of the 3D MRI. In expansion, the image fusion approach combines the multimodal images and makes a fused image to extricate… More >

  • Open Access

    ARTICLE

    MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks

    Juhong Tie1,2,*, Hui Peng2, Jiliu Zhou1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 427-445, 2021, DOI:10.32604/cmes.2021.014107

    Abstract The main task of magnetic resonance imaging (MRI) automatic brain tumor segmentation is to automatically segment the brain tumor edema, peritumoral edema, endoscopic core, enhancing tumor core and nonenhancing tumor core from 3D MR images. Because the location, size, shape and intensity of brain tumors vary greatly, it is very difficult to segment these brain tumor regions automatically. In this paper, by combining the advantages of DenseNet and ResNet, we proposed a new 3D U-Net with dense encoder blocks and residual decoder blocks. We used dense blocks in the encoder part and residual blocks in the decoder part. The number… More >

Displaying 1-10 on page 1 of 2. Per Page