Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (888)
  • Open Access

    ARTICLE

    Finite Element Simulations of the Localized Failure and Fracture Propagation in Cohesive Materials with Friction

    Chengbao Hu1,2,3, Shilin Gong4,*, Bin Chen1,2,3, Zhongling Zong4, Xingwang Bao5, Xiaojian Ru5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 997-1015, 2024, DOI:10.32604/cmes.2024.048640

    Abstract Strain localization frequently occurs in cohesive materials with friction (e.g., composites, soils, rocks) and is widely recognized as a fundamental cause of progressive structural failure. Nonetheless, achieving high-fidelity simulation for this issue, particularly concerning strong discontinuities and tension-compression-shear behaviors within localized zones, remains significantly constrained. In response, this study introduces an integrated algorithm within the finite element framework, merging a coupled cohesive zone model (CZM) with the nonlinear augmented finite element method (N-AFEM). The coupled CZM comprehensively describes tension-compression and compression-shear failure behaviors in cohesive, frictional materials, while the N-AFEM allows nonlinear coupled intra-element discontinuities without necessitating extra nodes or… More >

  • Open Access

    ARTICLE

    A Coupled Thermomechanical Crack Propagation Behavior of Brittle Materials by Peridynamic Differential Operator

    Tianyi Li1,2, Xin Gu2, Qing Zhang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 339-361, 2024, DOI:10.32604/cmes.2024.047566

    Abstract This study proposes a comprehensive, coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic differential operator (PDDO), eliminating the need for calibration procedures. The model employs a multi-rate explicit time integration scheme to handle varying time scales in multi-physics systems. Through simulations conducted on granite and ceramic materials, this model demonstrates its effectiveness. It successfully simulates thermal damage behavior in granite arising from incompatible mineral expansion and accurately calculates thermal crack propagation in ceramic slabs during quenching. To account for material heterogeneity, the model utilizes the Shuffle algorithm… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Reaction to Fire and Flammability of Hemp Shives Insulation Boards with Incorporated Microencapsulated Phase Change Materials

    Inga Zotova1,*, Edgars Kirilovs1, Laura Ziemele2

    Journal of Renewable Materials, Vol.12, No.3, pp. 603-613, 2024, DOI:10.32604/jrm.2024.047607

    Abstract Nowadays buildings contain innovative materials, materials from local resources, production surpluses and rapidly renewable natural resources. Phase Change Materials (PCM) are one such group of novel materials which reduce building energy consumption. With the wider availability of microencapsulated PCM, there is an opportunity to develop a new type of insulating materials, combinate PCM with traditional insulation materials for latent heat energy storage. These materials are typically flammable and are located on the interior wall finishing yet there has been no detailed assessment of their fire performance. In this research work prototypes of low-density insulating boards for indoor spaces from hemp… More > Graphic Abstract

    Comparative Analysis of Reaction to Fire and Flammability of Hemp Shives Insulation Boards with Incorporated Microencapsulated Phase Change Materials

  • Open Access

    REVIEW

    Overview of Jute Fibre as Thermoplastic Matrix Polymer Reinforcement

    Tezara Cionita1,*, Mohammad Hazim Mohamad Hamdan2, Januar Parlaungan Siregar3,4,*, Deni Fajar Fitriyana5, Ramli Junid6, Wong Ling Shing7, Jamiluddin Jaafar8, Agustinus Purna Irawan9, Teuku Rihayat10, Rifky Ismail11, Athanasius Priharyoto Bayuseno11, Emilianus Jehadus12

    Journal of Renewable Materials, Vol.12, No.3, pp. 457-483, 2024, DOI:10.32604/jrm.2024.045814

    Abstract Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals (SDGs). Due to their renewable resources and biodegradability, natural fiber-reinforced composites have been investigated as a sustainable alternative to synthetic materials to reduce the usage of hazardous waste and environmental pollution. Among the natural fibre, jute fibre obtained from a bast plant has an increasing trend in the application, especially as a reinforcement material. Numerous research works have been performed on jute fibre with regard to reinforced thermoset and thermoplastic composites. Nevertheless, current demands on sustainable materials have required… More >

  • Open Access

    REVIEW

    Sustainable Biocomposites Materials for Automotive Brake Pad Application: An Overview

    Joseph O. Dirisu1,*, Imhade P. Okokpujie2,3,*, Olufunmilayo O. Joseph1, Sunday O. Oyedepo1, Oluwasegun Falodun4, Lagouge K. Tartibu3, Firdaussi D. Shehu1

    Journal of Renewable Materials, Vol.12, No.3, pp. 485-511, 2024, DOI:10.32604/jrm.2024.045188

    Abstract Research into converting waste into viable eco-friendly products has gained global concern. Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscriminately occupying the land. This study reviews the literature in the broad area of green composites in search of materials that can be used in automotive brake pads. Materials made by biocomposite, rather than fossil fuels, will be favoured. A database containing the tribo-mechanical performance of numerous potential components for the future green composite was established using the technical details of bio-polymers and natural reinforcements. The development of materials with diverse compositions… More > Graphic Abstract

    Sustainable Biocomposites Materials for Automotive Brake Pad Application: An Overview

  • Open Access

    ARTICLE

    Preparation of Oil Shale Ash Filled High Density Polyethylene Composite Materials and their Characterization

    RAID BANAT1,*, MANAL AL-RAWASHDEH1, HEBA ALKHLAIFAT1

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 137-151, 2021, DOI:10.32381/JPM.2021.38.1-2.11

    Abstract Composite of oil Shale ash (OSA) filler and high density polyethylene (HDPE) matrix was formulated and studied. OSA mainly composed of Ca, Si, and Fe most of which in oxide forms. OSA-HDPE composite with 0, 5, 10, 15, 20, and 25 wt. % OSA were produced using extrusion and hot press. Mechanical, morphological, and water uptake properties of the composite are discussed herein. While the tensile stress at yield, 47 MPa, restored its value close to the neat HDPE, an increase in the mean values of the tensile stress at rapture from 19 to 33 MPa, the tensile modulus from… More >

  • Open Access

    ARTICLE

    Growth of Non-enzymatic Cholesterol Biosensor using TiO2 Decorated Graphene Oxide with Bare GCE and PPy-GCE

    S. DEIVANAYAKI1,*, P. JAYAMURUGAN2, S. ASHOKAN3, V. GOPALA KRISHNAN4, B. YOGESWARI5

    Journal of Polymer Materials, Vol.38, No.3-4, pp. 295-307, 2021, DOI:10.32381/JPM.2021.38.3-4.10

    Abstract The cholesterol level determination is a significant clinical diagnostic solution for heart and, thrombosis problems. In this work, we examined a novel non-enzymatic cholesterol biosensor using cholesterol oxidase (ChOx) enzyme immobilized on TiO2 nanoparticles influenced by reduced graphene oxide (rGO) - polypyrrole (PPy) (rGO-TiO2 /PPy-GCE) nanocomposite was developed on a glassy carbon electrode (GCE) and the higher sensing response with lower detection limits were observed. The electrochemical properties of GCE modified PPy (PPy-GCE) were studied using CV (Cyclic Voltammetry) and DPV (Differential Pulse Voltammetry). The reported sensor exhibited piecewise linearity in the range of 0.1 µM to 1 µM and… More >

  • Open Access

    ARTICLE

    Development of Chitosan-based Films Containing Hypericum perforatum L. and Citrus limon L. as Potential Wound Dressing Materials

    DENIZ AKIN SAHBAZ1,*, BETUL TURP KAYA2

    Journal of Polymer Materials, Vol.38, No.3-4, pp. 247-256, 2021, DOI:10.32381/JPM.2021.38.3-4.6

    Abstract The objective of this study is to develop chitosan-based films containing Hypericum perforatum L. and/or Citrus limon L. oils and to investigate their suitability as novel wound dressing materials. The morphology of the chitosan-based films were observed by means of employing the scanning electron microscopy (SEM) and the chemical structure characterization was performed via Fourier Transform Infrared Spectroscopy (FTIR). Hypericum perforatum L. and/or Citrus limon L. were successfully incorporated to the chitosan films. Antibacterial, swelling, and mechanical properties of these films were investigated. The antibacterial property was enhanced by incorporating Hypericum perforatum L. and Citrus limon L. oils in the… More >

  • Open Access

    ARTICLE

    Recovery of Pure Water, Salicylic Acid Crystals, and Paracetamol using PVDF-MWCNT Membranes by Membrane Distillation-crystallization

    NIKHIL R. MENE1, SARITA KALLA1,*, Z.V.P. MURTHY1,*

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 307-323, 2022, DOI:10.32381/JPM.2022.39.3-4.9

    Abstract Membrane distillation-crystallization (MDC) is presented as a novel technique in the treatment of waste concentrated water which produces valuable crystals along with pure water. In the present study, multi-walled carbon nanotubes (MWCNT)/polyvinylidene fluoride (PVDF) flat sheet membranes were prepared via the wet phase inversion method and applied in MDC for the treatment of pharmaceutical waste. The pure and modified membrane surface properties are characterized with the help of SEM, FTIR, and contact angle measurement. The present work reported the effect of MWCNT content and feed temperature on the MDCperformance and measured pure water flux and pharmaceutical compounds recovery. The observed… More >

  • Open Access

    ARTICLE

    Studies on Compressive Loading-characteristics of PU Foam Materials Used in Footwear for Obese

    S. MATHIVANAN*, R. MOHAN, RAMES C PANDA, P. BALACHANDER1

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 195-204, 2022, DOI:10.32381/JPM.2022.39.3-4.2

    Abstract Optimum-designed footwear with polyurethane (PU) material for comfort is an important requirement for obese. Investigations on compressive behavior of varied designed footwear using 120 D PU material have been carried out. The energy absorption primarily depends on heel height, slope angle and load applied or body mass index of obese. Statistical analysis has been used to formulate the prediction of absorbed energy wherein a heel height of 30 mm with 20-degree angle provides optimum value with the incorporation of 120 D PU material. A coefficientof-determination (R2 ) value of 0.9406 confirms the suitability of the statistical regression model. Hence, the… More >

Displaying 11-20 on page 2 of 888. Per Page