Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19,965)
  • Open Access

    ARTICLE

    Multipoint Deformation Prediction Model Based on Clustering Partition of Extra High-Arch Dams

    Bin Ou1,2,3,4, Haoquan Chi1,3, Xu’an Qian1,3, Shuyan Fu1,3, Zhirui Miao1,3, Dingzhu Zhao1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.074757 - 29 January 2026

    Abstract Deformation prediction for extra-high arch dams is highly important for ensuring their safe operation. To address the challenges of complex monitoring data, the uneven spatial distribution of deformation, and the construction and optimization of a prediction model for deformation prediction, a multipoint ultrahigh arch dam deformation prediction model, namely, the CEEMDAN-KPCA-GSWOA-KELM, which is based on a clustering partition, is proposed. First, the monitoring data are preprocessed via variational mode decomposition (VMD) and wavelet denoising (WT), which effectively filters out noise and improves the signal-to-noise ratio of the data, providing high-quality input data for subsequent prediction… More > Graphic Abstract

    Multipoint Deformation Prediction Model Based on Clustering Partition of Extra High-Arch Dams

  • Open Access

    ARTICLE

    Gradient Descent-Based Prediction of Heat-Transmission Rate of Engine Oil-Based Hybrid Nanofluid over Trapezoidal and Rectangular Fins for Sustainable Energy Systems

    Maddina Dinesh Kumar1,#, S. U. Mamatha2, Khalid Masood3, Nehad Ali Shah4,#, Se-Jin Yook1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074680 - 29 January 2026

    Abstract Fluid dynamic research on rectangular and trapezoidal fins is aimed at increasing heat transfer by means of large surfaces. The trapezoidal cavity form is compared with its thermal and flow performance, and it is revealed that trapezoidal fins tend to be more efficient, particularly when material optimization is critical. Motivated by the increasing need for sustainable energy management, this work analyses the thermal performance of inclined trapezoidal and rectangular porous fins utilising a unique hybrid nanofluid. The effectiveness of nanoparticles in a working fluid is primarily determined by their thermophysical properties; hence, optimising these properties… More >

  • Open Access

    ARTICLE

    Noninvasive Radar Sensing Augmented with Machine Learning for Reliable Detection of Motor Imbalance

    Faten S. Alamri1, Adil Ali Saleem2, Muhammad I. Khan3, Hafeez Ur Rehman Siddiqui2, Amjad Rehman3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074679 - 29 January 2026

    Abstract Motor imbalance is a critical failure mode in rotating machinery, potentially causing severe equipment damage if undetected. Traditional vibration-based diagnostic methods rely on direct sensor contact, leading to installation challenges and measurement artifacts that can compromise accuracy. This study presents a novel radar-based framework for non-contact motor imbalance detection using 24 GHz continuous-wave radar. A dataset of 1802 experimental trials was sourced, covering four imbalance levels (0, 10, 20, 30 g) across varying motor speeds (500–1500 rpm) and load torques (0–3 Nm). Dual-channel in-phase and quadrature radar signals were captured at 10,000 samples per second… More >

  • Open Access

    ARTICLE

    Explainable Ensemble Learning Framework for Early Detection of Autism Spectrum Disorder: Enhancing Trust, Interpretability and Reliability in AI-Driven Healthcare

    Menwa Alshammeri1,2,*, Noshina Tariq3, NZ Jhanji4,5, Mamoona Humayun6, Muhammad Attique Khan7

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074627 - 29 January 2026

    Abstract Artificial Intelligence (AI) is changing healthcare by helping with diagnosis. However, for doctors to trust AI tools, they need to be both accurate and easy to understand. In this study, we created a new machine learning system for the early detection of Autism Spectrum Disorder (ASD) in children. Our main goal was to build a model that is not only good at predicting ASD but also clear in its reasoning. For this, we combined several different models, including Random Forest, XGBoost, and Neural Networks, into a single, more powerful framework. We used two different types More >

  • Open Access

    ARTICLE

    Multivariate Data Anomaly Detection Based on Graph Structure Learning

    Haoxiang Wen1, Zhaoyang Wang1, Zhonglin Ye1,*, Haixing Zhao1, Maosong Sun2

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074410 - 29 January 2026

    Abstract Multivariate anomaly detection plays a critical role in maintaining the stable operation of information systems. However, in existing research, multivariate data are often influenced by various factors during the data collection process, resulting in temporal misalignment or displacement. Due to these factors, the node representations carry substantial noise, which reduces the adaptability of the multivariate coupled network structure and subsequently degrades anomaly detection performance. Accordingly, this study proposes a novel multivariate anomaly detection model grounded in graph structure learning. Firstly, a recommendation strategy is employed to identify strongly coupled variable pairs, which are then used More >

  • Open Access

    ARTICLE

    Context-Aware Spam Detection Using BERT Embeddings with Multi-Window CNNs

    Sajid Ali1, Qazi Mazhar Ul Haq1,2,*, Ala Saleh Alluhaidan3,*, Muhammad Shahid Anwar4, Sadique Ahmad5, Leila Jamel3

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.074395 - 29 January 2026

    Abstract Spam emails remain one of the most persistent threats to digital communication, necessitating effective detection solutions that safeguard both individuals and organisations. We propose a spam email classification framework that uses Bidirectional Encoder Representations from Transformers (BERT) for contextual feature extraction and a multiple-window Convolutional Neural Network (CNN) for classification. To identify semantic nuances in email content, BERT embeddings are used, and CNN filters extract discriminative n-gram patterns at various levels of detail, enabling accurate spam identification. The proposed model outperformed Word2Vec-based baselines on a sample of 5728 labelled emails, achieving an accuracy of 98.69%, More >

  • Open Access

    ARTICLE

    Inverse Design of Composite Materials Based on Latent Space and Bayesian Optimization

    Xianrui Lyu, Xiaodan Ren*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074388 - 29 January 2026

    Abstract Inverse design of advanced materials represents a pivotal challenge in materials science. Leveraging the latent space of Variational Autoencoders (VAEs) for material optimization has emerged as a significant advancement in the field of material inverse design. However, VAEs are inherently prone to generating blurred images, posing challenges for precise inverse design and microstructure manufacturing. While increasing the dimensionality of the VAE latent space can mitigate reconstruction blurriness to some extent, it simultaneously imposes a substantial burden on target optimization due to an excessively high search space. To address these limitations, this study adopts a Variational… More >

  • Open Access

    ARTICLE

    Superpixel-Aware Transformer with Attention-Guided Boundary Refinement for Salient Object Detection

    Burhan Baraklı1,*, Can Yüzkollar2, Tuğrul Taşçı3, İbrahim Yıldırım2

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074292 - 29 January 2026

    Abstract Salient object detection (SOD) models struggle to simultaneously preserve global structure, maintain sharp object boundaries, and sustain computational efficiency in complex scenes. In this study, we propose SPSALNet, a task-driven two-stage (macro–micro) architecture that restructures the SOD process around superpixel representations. In the proposed approach, a “split-and-enhance” principle, introduced to our knowledge for the first time in the SOD literature, hierarchically classifies superpixels and then applies targeted refinement only to ambiguous or error-prone regions. At the macro stage, the image is partitioned into content-adaptive superpixel regions, and each superpixel is represented by a high-dimensional region-level… More >

  • Open Access

    ARTICLE

    Bias Calibration under Constrained Communication Using Modified Kalman Filter: Algorithm Design and Application to Gyroscope Parameter Error Calibration

    Qi Li, Yifan Wang*, Yuxi Liu, Xingjing She, Yixuan Wu

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074066 - 29 January 2026

    Abstract In data communication, limited communication resources often lead to measurement bias, which adversely affects subsequent system estimation if not effectively handled. This paper proposes a novel bias calibration algorithm under communication constraints to achieve accurate system states of the interested system. An output-based event-triggered scheme is first employed to alleviate transmission burden. Accounting for the limited-communication-induced measurement bias, a novel bias calibration algorithm following the Kalman filtering line is developed to restrain the effect of the measurement bias on system estimation, thereby achieving accurate system state estimates. Subsequently, the Field Programmable Gate Array (FPGA) implementation More >

  • Open Access

    ARTICLE

    Spatio-Temporal Graph Neural Networks with Elastic-Band Transform for Solar Radiation Prediction

    Guebin Choi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073985 - 29 January 2026

    Abstract This study proposes a novel forecasting framework that simultaneously captures the strong periodicity and irregular meteorological fluctuations inherent in solar radiation time series. Existing approaches typically define inter-regional correlations using either simple correlation coefficients or distance-based measures when applying spatio-temporal graph neural networks (STGNNs). However, such definitions are prone to generating spurious correlations due to the dominance of periodic structures. To address this limitation, we adopt the Elastic-Band Transform (EBT) to decompose solar radiation into periodic and amplitude-modulated components, which are then modeled independently with separate graph neural networks. The periodic component, characterized by strong More >

Displaying 41-50 on page 5 of 19965. Per Page