Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (553)
  • Open Access

    ARTICLE

    Locking-free Thick-Thin Rod/Beam Element for Large Deformation Analyses of Space-Frame Structures, Based on the Reissner Variational Principle and A Von Karman Type Nonlinear Theory

    Y.C. Cai1,2, J.K. Paik3, S.N. Atluri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.1, pp. 75-108, 2010, DOI:10.3970/cmes.2010.058.075

    Abstract This paper presents a new shear flexible beam/rod element for large deformation analyses of space-frame structures comprising of thin or thick members, based on the Reissner variational principle and a von Karman type nonlinear theory of deformation in the co-rotational reference frame of the present beam element. The C0continuous trial functions for transverse rotations in two independent directions are used over each element, to derive an explicit expression for the (16x16)symmetrictangent stiffness matrix of the beam element in the co-rotational reference frame. When compared to the primal approach wherein C1continuous trial functions for transverse displacements over each element are necessary,… More >

  • Open Access

    ARTICLE

    Locking-free Thick-Thin Rod/Beam Element Based on a von Karman Type Nonlinear Theory in Rotated Reference Frames For Large Deformation Analyses of Space-Frame Structures

    H.H. Zhu1, Y.C. Cai1,2, J.K. Paik3, S.N. Atluri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.2, pp. 175-204, 2010, DOI:10.3970/cmes.2010.057.175

    Abstract This paper presents a new shear flexible beam/rod element for large deformation analyses of space-frame structures, comprising of thin or thick beams. The formulations remain uniformly valid for thick or thin beams, without using any numerical expediencies such as selective reduced integrations, etc. A von Karman type nonlinear theory of deformation is employed in the co-rotational reference frame of the present beam element, to account for bending, stretching, torsion and shearing of each element. Transverse shear strains in two independant directions are introduced as additional variables, in order to eliminate the shear locking phenomenon. An assumed displacement approach is used… More >

  • Open Access

    ARTICLE

    Large Deformation Analyses of Space-Frame Structures, Using Explicit Tangent Stiffness Matrices, Based on the Reissner variational principle and a von Karman Type Nonlinear Theory in Rotated Reference Frames

    Yongchang Cai1,2, J.K. Paik3, Satya N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.54, No.3, pp. 335-368, 2009, DOI:10.3970/cmes.2009.054.335

    Abstract This paper presents a simple finite element method, based on assumed moments and rotations, for geometrically nonlinear large rotation analyses of space frames consisting of members of arbitrary cross-section. A von Karman type nonlinear theory of deformation is employed in the updated Lagrangian co-rotational reference frame of each beam element, to account for bending, stretching, and torsion of each element. The Reissner variational principle is used in the updated Lagrangian co-rotational reference frame, to derive an explicit expression for the (12x12)symmetrictangent stiffness matrix of the beam element in the co-rotational reference frame. The explicit expression for the finite rotation of… More >

  • Open Access

    ARTICLE

    Large Deformation Analyses of Space-Frame Structures, with Members of arbitrary Cross-Section, Using Explicit Tangent Stiffness Matrices, Based on a von Karman Type Nonlinear Theory in Rotated Reference Frames

    Yongchang Cai1,2, J.K. Paik3, Satya N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.2, pp. 123-152, 2009, DOI:10.3970/cmes.2009.053.123

    Abstract This paper presents a simple finite element method, based on simple mechanics and physical clarity, for geometrically nonlinear large rotation analyses of space frames consisting of members of arbitrary cross-section. A co-rotational reference frame, involving the axes of each finitely rotated beam finite-element, is used as the Updated Lagrangian reference frame for the respective element. A von Karman type nonlinear theory of deformation is employed in the co-rotational reference frame of each beam element, to account for bending, stretching, and torsion of each element. An assumed displacement approach is used to derive an explicit expression for the (12x12)symmetrictangent stiffness matrix… More >

  • Open Access

    ARTICLE

    Dynamical Response of Two Axially Pre-Strained System Comprising of a Covering Layer and a Half Space to Rectangular Time-Harmonic Forces

    I. Emiroglu1, F. Tasci1, S. D. Akbarov2

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.1, pp. 47-68, 2009, DOI:10.3970/cmes.2009.049.047

    Abstract The time-harmonic dynamical stress field in the system comprising two axially pre-stressed covering layer and two axially pre-stressed half space was studied under the action of uniformly distributed forces on free face plane of the covering layer. It is assumed that the forces are distributed within the rectangular area. The study was conducted within the scope of the piecewise homogeneous body model with the use of three-dimensional theory of elastic waves in an initially stressed bodies. The materials of the layer and half-space were assumed to be isotropic and homogeneous. The corresponding three-dimensional boundary-value-contact problem was solved by applying double… More >

  • Open Access

    ARTICLE

    An Efficient Response Surface Based Optimisation Method for Non-Deterministic Harmonic and Transient Dynamic Analysis

    M. De Munck1, D. Moens2, W. Desmet3, D.Vandepitte3

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.2, pp. 119-166, 2009, DOI:10.3970/cmes.2009.047.119

    Abstract Deterministic simulation tools enable a very precise simulation of physical phenomena using numerical models. In many real life situations however, a deterministic analysis is not sufficient to assess the quality of a design. In a design stage, some physical properties of the model may not be determined yet. But even in a design ready for production, design tolerances and production inaccuracies introduce variability and uncertainty. In these cases, a non-deterministic analysis procedure is required, either using a probabilistic or a non-probabilistic approach. The authors developed an intelligent Kriging response surface based optimisation procedure that can be used in combination with… More >

  • Open Access

    ARTICLE

    A Highly Accurate MCTM for Direct and Inverse Problems of Biharmonic Equation in Arbitrary Plane Domains

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.30, No.2, pp. 65-76, 2008, DOI:10.3970/cmes.2008.030.065

    Abstract Trefftz method (TM) is one of widely used meshless numerical methods in elliptic type boundary value problems, of which the approximate solution is expressed as a linear combination of T-complete bases, and the unknown coefficients are determined from boundary conditions by solving a linear equations system. However, the accuracy of TM is severely limited by its ill-conditioning. This paper is a continuation of the work of Liu (2007a). The collocation TM is modified and applied to the direct and inverse problems of biharmonic equation in a simply connected plane domain. Due to its well-conditioning of the resulting linear equations system,… More >

  • Open Access

    ARTICLE

    Derivation of Anti-Plane Dynamic Green's Function for Several Circular Inclusions with Imperfect Interfaces

    Jeng-Tzong Chen1, Jia-Nan Ke

    CMES-Computer Modeling in Engineering & Sciences, Vol.29, No.3, pp. 111-136, 2008, DOI:10.3970/cmes.2008.029.111

    Abstract A null-field integral equation is employed to derive the two-dimensional antiplane dynamic Green's functions for a circular inclusion with an imperfect interface. We employ the linear spring model with vanishing thickness to characterize the imperfect interface. Analytical expressions of displacement and stress fields due to time-harmonic antiplane line forces located either in the unbounded matrix or in the circular inclusion are presented. To fully capture the circular geometries, degenerate- kernel expressions of fundamental solutions in the polar coordinate and Fourier series for boundary densities are adopted. Good agreement is made after comparing with the analytical solution derived by Wang and… More >

  • Open Access

    ARTICLE

    Particular Solutions of Chebyshev Polynomials for Polyharmonic and Poly-Helmholtz Equations

    Chia-Cheng Tsai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.3, pp. 151-162, 2008, DOI:10.3970/cmes.2008.027.151

    Abstract In this paper we develop analytical particular solutions for the polyharmonic and the products of Helmholtz-type partial differential operators with Chebyshev polynomials at right-hand side. Our solutions can be written explicitly in terms of either monomial or Chebyshev bases. By using these formulas, we can obtain the approximate particular solution when the right-hand side has been represented by a truncated series of Chebyshev polynomials. These formulas are further implemented to solve inhomogeneous partial differential equations (PDEs) in which the homogeneous solutions are complementarily solved by the method of fundamental solutions (MFS). Numerical experiments, which include eighth order PDEs and three-dimensional… More >

  • Open Access

    ARTICLE

    Investigation of the Effect of Frictional Contact in III-Mode Crack under Action of the SH-Wave Harmonic Load

    A.N. Guz1, V.V. Zozulya2

    CMES-Computer Modeling in Engineering & Sciences, Vol.22, No.2, pp. 119-128, 2007, DOI:10.3970/cmes.2007.022.119

    Abstract The frictional contact interaction of the edges of a finite plane crack is studied for the case of normal incidence of a harmonic SH-shear wave which produces antiplane deformation. The forces of contact interaction and displacement discontinuity are analyzed. Influence of the wave frequency on the stress intensity factor for different coefficients of friction is studied here. More >

Displaying 531-540 on page 54 of 553. Per Page