Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (105)
  • Open Access


    VGWO: Variant Grey Wolf Optimizer with High Accuracy and Low Time Complexity

    Junqiang Jiang1,2, Zhifang Sun1, Xiong Jiang1, Shengjie Jin1, Yinli Jiang3, Bo Fan1,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1617-1644, 2023, DOI:10.32604/cmc.2023.041973

    Abstract The grey wolf optimizer (GWO) is a swarm-based intelligence optimization algorithm by simulating the steps of searching, encircling, and attacking prey in the process of wolf hunting. Along with its advantages of simple principle and few parameters setting, GWO bears drawbacks such as low solution accuracy and slow convergence speed. A few recent advanced GWOs are proposed to try to overcome these disadvantages. However, they are either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence. To solve the abovementioned issues, a high-accuracy variable grey wolf optimizer (VGWO) with low time complexity… More >

  • Open Access


    Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks

    Lu Wei, Zhong Ma*, Chaojie Yang

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 981-1000, 2024, DOI:10.32604/cmes.2023.027085

    Abstract The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing. Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices. In order to reduce the complexity and overhead of deploying neural networks on Integer-only hardware, most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network. However, although symmetric quantization has the advantage of easier implementation, it is sub-optimal for cases where the range could be skewed and not symmetric. This often comes at the cost of lower accuracy. This… More > Graphic Abstract

    Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks

  • Open Access


    Efficient Computational Inverse Method for Positioning Accuracy Estimation of Industrial Robot Under Stochastic Uncertainties

    Jinhe Zhang2, Jie Liu1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09279

    Abstract The small uncertainties of geometric parameters of industrial robot, which are caused by links manufacturing and service wear errors, can deteriorate the positioning accuracy of end-effector through multi-level propagation and is difficult to be measured and compensated by high-precision instruments. Hence, an efficient inverse identification method of parameter uncertainty based on global sensitivity analysis and optimal measurement point selection is proposed. In order to ensure the universality of identification results in calibration and control works, the standard Denavit-Hartenberg (D-H) method is employed to establish the kinematic model of series 6 degrees of freedom (DOF) robots. Considering the stochastic error between… More >

  • Open Access


    A Spatio-Temporal Heterogeneity Data Accuracy Detection Method Fused by GCN and TCN

    Tao Liu1, Kejia Zhang1,*, Jingsong Yin1, Yan Zhang1, Zihao Mu1, Chunsheng Li1, Yanan Hu2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2563-2582, 2023, DOI:10.32604/csse.2023.041228

    Abstract Spatio-temporal heterogeneous data is the database for decision-making in many fields, and checking its accuracy can provide data support for making decisions. Due to the randomness, complexity, global and local correlation of spatiotemporal heterogeneous data in the temporal and spatial dimensions, traditional detection methods can not guarantee both detection speed and accuracy. Therefore, this article proposes a method for detecting the accuracy of spatiotemporal heterogeneous data by fusing graph convolution and temporal convolution networks. Firstly, the geographic weighting function is introduced and improved to quantify the degree of association between nodes and calculate the weighted adjacency value to simplify the… More >

  • Open Access


    Modelling an Efficient URL Phishing Detection Approach Based on a Dense Network Model

    A. Aldo Tenis*, R. Santhosh

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2625-2641, 2023, DOI:10.32604/csse.2023.036626

    Abstract The social engineering cyber-attack is where culprits mislead the users by getting the login details which provides the information to the evil server called phishing. The deep learning approaches and the machine learning are compared in the proposed system for presenting the methodology that can detect phishing websites via Uniform Resource Locator (URLs) analysis. The legal class is composed of the home pages with no inclusion of login forms in most of the present modern solutions, which deals with the detection of phishing. Contrarily, the URLs in both classes from the login page due, considering the representation of a real… More >

  • Open Access


    AI Method for Improving Crop Yield Prediction Accuracy Using ANN

    T. Sivaranjani1,*, S. P. Vimal2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 153-170, 2023, DOI:10.32604/csse.2023.036724

    Abstract Crop Yield Prediction (CYP) is critical to world food production. Food safety is a top priority for policymakers. They rely on reliable CYP to make import and export decisions that must be fulfilled before launching an agricultural business. Crop Yield (CY) is a complex variable influenced by multiple factors, including genotype, environment, and their interactions. CYP is a significant agrarian issue. However, CYP is the main task due to many composite factors, such as climatic conditions and soil characteristics. Machine Learning (ML) is a powerful tool for supporting CYP decisions, including decision support on which crops to grow in a… More >

  • Open Access


    Optimizing Spatial Relationships in GCN to Improve the Classification Accuracy of Remote Sensing Images

    Zimeng Yang, Qiulan Wu, Feng Zhang*, Xuefei Chen, Weiqiang Wang, Xueshen Zhang

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 491-506, 2023, DOI:10.32604/iasc.2023.037558

    Abstract Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation. With the continuous development of artificial intelligence technology, the use of deep learning methods for interpreting remote-sensing images has matured. Existing neural networks disregard the spatial relationship between two targets in remote sensing images. Semantic segmentation models that combine convolutional neural networks (CNNs) and graph convolutional neural networks (GCNs) cause a lack of feature boundaries, which leads to the unsatisfactory segmentation of various target feature boundaries. In this paper, we propose a new semantic segmentation model for remote sensing images (called DGCN hereinafter),… More >

  • Open Access


    A New Hybrid Feature Selection Sequence for Predicting Breast Cancer Survivability Using Clinical Datasets

    E. Jenifer Sweetlin*, S. Saudia

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 343-367, 2023, DOI:10.32604/iasc.2023.036742

    Abstract This paper proposes a hybrid feature selection sequence complemented with filter and wrapper concepts to improve the accuracy of Machine Learning (ML) based supervised classifiers for classifying the survivability of breast cancer patients into classes, living and deceased using METABRIC and Surveillance, Epidemiology and End Results (SEER) datasets. The ML-based classifiers used in the analysis are: Multiple Logistic Regression, K-Nearest Neighbors, Decision Tree, Random Forest, Support Vector Machine and Multilayer Perceptron. The workflow of the proposed ML algorithm sequence comprises the following stages: data cleaning, data balancing, feature selection via a filter and wrapper sequence, cross validation-based training, testing and… More >

  • Open Access


    Energy Efficient Hyperparameter Tuned Deep Neural Network to Improve Accuracy of Near-Threshold Processor

    K. Chanthirasekaran, Raghu Gundaala*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 471-489, 2023, DOI:10.32604/iasc.2023.036130

    Abstract When it comes to decreasing margins and increasing energy efficiency in near-threshold and sub-threshold processors, timing error resilience may be viewed as a potentially lucrative alternative to examine. On the other hand, the currently employed approaches have certain restrictions, including high levels of design complexity, severe time constraints on error consolidation and propagation, and uncontaminated architectural registers (ARs). The design of near-threshold circuits, often known as NT circuits, is becoming the approach of choice for the construction of energy-efficient digital circuits. As a result of the exponentially decreased driving current, there was a reduction in performance, which was one of… More >

  • Open Access


    Classification of Electroencephalogram Signals Using LSTM and SVM Based on Fast Walsh-Hadamard Transform

    Saeed Mohsen1,2,*, Sherif S. M. Ghoneim3, Mohammed S. Alzaidi3, Abdullah Alzahrani3, Ashraf Mohamed Ali Hassan4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5271-5286, 2023, DOI:10.32604/cmc.2023.038758

    Abstract Classification of electroencephalogram (EEG) signals for humans can be achieved via artificial intelligence (AI) techniques. Especially, the EEG signals associated with seizure epilepsy can be detected to distinguish between epileptic and non-epileptic regions. From this perspective, an automated AI technique with a digital processing method can be used to improve these signals. This paper proposes two classifiers: long short-term memory (LSTM) and support vector machine (SVM) for the classification of seizure and non-seizure EEG signals. These classifiers are applied to a public dataset, namely the University of Bonn, which consists of 2 classes –seizure and non-seizure. In addition, a fast… More >

Displaying 1-10 on page 1 of 105. Per Page