Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access

    REVIEW

    Fatigue Resistance in Engineering Components: A Comprehensive Review on the Role of Geometry and Its Optimization

    Ibrahim T. Teke1,2, Ahmet H. Ertas2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 201-237, 2025, DOI:10.32604/cmes.2025.066644 - 31 July 2025

    Abstract Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading. While earlier studies mainly examined material properties and how stress affects lifespan, this review offers the first comprehensive, multiscale comparison of strategies that optimize geometry to improve fatigue performance. This includes everything from microscopic features like the shape of graphite nodules to large-scale design elements such as fillets, notches, and overall structural layouts. We analyze and combine various methods, including topology and shape optimization, the ability of additive manufacturing to fine-tune internal geometries, and reliability-based More >

  • Open Access

    REVIEW

    Additive Manufacturing of Polymer Metamaterials for Vibration Isolation: A Review

    Jiefei Huang1, Hao Zhou1, Mengying Chen1, Lei Yang1,2,*

    Journal of Polymer Materials, Vol.42, No.2, pp. 307-338, 2025, DOI:10.32604/jpm.2025.062620 - 14 July 2025

    Abstract Vibration isolation is vital in engineering machinery, as it not only seriously affects the service life of machine components but also reduces the operating efficiency. Recently, metamaterials have been proposed for customized vibration-isolation needs through various functional designs. As a synthetic material, polymer materials have the advantages of good elasticity, low density, high specific strength, good corrosion resistance and easy processing, making it an ideal raw material for vibration-isolation metamaterials. At the same time, the rapid development of additive manufacturing (AM) provides a feasible method for preparing polymeric vibration-isolation metamaterials with complex structures. In this More >

  • Open Access

    REVIEW

    Advances in Crack Formation Mechanisms, Evaluation Models, and Compositional Strategies for Additively Manufactured Nickel-Based Superalloys

    Huabo Wu1,2, Jialiao Zhou3, Lan Huang1,2,*, Zi Wang1,2,*, Liming Tan1,2, Jin Lv4, Feng Liu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2675-2709, 2025, DOI:10.32604/cmes.2025.064854 - 30 June 2025

    Abstract Nickel-based superalloys are indispensable for high-temperature engineering applications, yet their additive manufacturing (AM) is plagued by significant cracking defects. This review investigates crack failure mechanisms in AM nickel-based superalloys, emphasizing methodologies to evaluate crack sensitivity and compositional design strategies to mitigate defects. Key crack types—solidification, liquation, solid-state, stress corrosion, fatigue, and creep-fatigue cracks—are analyzed, with focus on formation mechanisms driven by thermal gradients, solute segregation, and microstructural heterogeneities. Evaluation frameworks such as the Rappaz-Drezet-Gremaud (RDG) criterion, Solidification Cracking Index (SCI), and Strain Age Cracking (SAC) index are reviewed for predicting crack susceptibility through integration of… More >

  • Open Access

    ARTICLE

    Application of Multi-Criteria Decision and Simulation Approaches to Selection of Additive Manufacturing Technology for Aerospace Application

    Ilesanmi Afolabi Daniyan1,*, Rumbidzai Muvunzi2, Festus Fameso3, Julius Ndambuki3, Williams Kupolati3, Jacques Snyman3

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1623-1648, 2025, DOI:10.32604/cmc.2025.062092 - 16 April 2025

    Abstract This study evaluates the Fuzzy Analytical Hierarchy Process (FAHP) as a multi-criteria decision (MCD) support tool for selecting appropriate additive manufacturing (AM) techniques that align with cleaner production and environmental sustainability. The FAHP model was validated using an example of the production of aircraft components (specifically fuselage) employing AM technologies such as Wire Arc Additive Manufacturing (WAAM), laser powder bed fusion (L-PBF), Binder Jetting (BJ), Selective Laser Sintering (SLS), and Laser Metal Deposition (LMD). The selection criteria prioritized eco-friendly manufacturing considerations, including the quality and properties of the final product (e.g., surface finish, high strength,… More >

  • Open Access

    ARTICLE

    Finite Element Modeling of Thermo-Viscoelastoplastic Behavior of Dievar Alloy under Hot Rotary Swaging

    Josef Izák1,*, Marek Benč2, Petr Opěla2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3115-3133, 2025, DOI:10.32604/cmes.2025.059234 - 03 March 2025

    Abstract The paper deals with the FEM (Finite Element Method) simulation of rotary swaging of Dievar alloy produced by additive manufacturing technology Selective Laser Melting and conventional process. Swaging was performed at a temperature of 900°C. True flow stress-strain curves were determined for 600°C–900°C and used to construct a Hensel-Spittel model for FEM simulation. The process parameters, i.e., stress, temperature, imposed strain, and force, were investigation during the rotary swaging process. Firstly, the stresses induced during rotary swaging and the resistance of the material to deformation were investigated. The amount and distribution of imposed strain in… More >

  • Open Access

    ARTICLE

    Parametric Analysis and Designing Maps for Powder Spreading in Metal Additive Manufacturing

    Yuxuan Wu, Sirish Namilae*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2067-2090, 2025, DOI:10.32604/cmes.2024.059091 - 27 January 2025

    Abstract Powder bed fusion (PBF) in metallic additive manufacturing offers the ability to produce intricate geometries, high-strength components, and reliable products. However, powder processing before energy-based binding significantly impacts the final product’s integrity. Processing maps guide efficient process design to minimize defects, but creating them through experimentation alone is challenging due to the wide range of parameters, necessitating a comprehensive computational parametric analysis. In this study, we used the discrete element method to parametrically analyze the powder processing design space in PBF of stainless steel 316L powders. Uniform lattice parameter sweeps are often used for parametric… More >

  • Open Access

    ARTICLE

    Revolutionizing Biodegradable and Sustainable Materials: Exploring the Synergy of Polylactic Acid Blends with Sea Shells

    Prashanth K P1,*, Rudresh M2, Venkatesh N3, Poornima Gubbi Shivarathri4, Shwetha Rajappa5

    Journal of Renewable Materials, Vol.12, No.12, pp. 2115-2134, 2024, DOI:10.32604/jrm.2024.055437 - 20 December 2024

    Abstract This study explores the mechanical properties of a novel composite material, blending polylactic acid (PLA) with sea shells, through a comprehensive tensile test analysis. The tensile test results offer valuable insights into the material’s behavior under axial loading, shedding light on its strength, stiffness, and deformation characteristics. The results suggest that the incorporation of sea shells decrease the tensile strength of 14.55% and increase the modulus of 27.44% for 15 wt% SSP (sea shell powder) into PLA, emphasizing the reinforcing potential of the mineral-rich sea shell particles. However, a potential trade-off between decreased strength and… More >

  • Open Access

    PROCEEDINGS

    Material-Structure Integrated Additive Manufacturing of Bio-Inspired Lightweight Metallic Components for Aerospace Applications

    Dongdong Gu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013403

    Abstract In this presentation, we will report our recent research progress and prospect in the fields of laser additive manufacturing (AM) / 3D printing (3DP) of high-performance/multi-functional lightweight metallic components for aerospace applications. The innovative elements of AM including multi-material layout, innovative structural design, tailored printing process, and resultant high performance and multiple functions of components will be addressed. For a tailored printing process, some key scientific issues in AM process control deserve to be studied, including interaction of energy and printed matter, thermodynamic and dynamic behavior of printing, relationship of process parameters, microstructure and properties. More >

  • Open Access

    PROCEEDINGS

    Additively Manufactured Dual-Faced Structured Fabric for Shape-Adaptive Protection

    Yuanyuan Tian1,2, Kun Zhou1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013372

    Abstract Fabric-based materials have demonstrated promise for high-performance wearable applications but are currently restricted by their deficient mechanical properties. Here, we leverage the design freedom offered by additive manufacturing and a novel interlocking pattern to for the first time fabricate a dual-faced chain mail structure consisting of three-dimensional re-entrant unit cells. The flexible structured fabric demonstrates high specific energy absorption and specific strength of up to 1530 J/kg and 5900 N·m/kg, respectively, together with an excellent recovery ratio of ~80%, thereby overcoming the strength–recoverability trade-off. The designed dual-faced structured fabric compares favorably against a wide range More >

  • Open Access

    PROCEEDINGS

    Additive Manufacturing of Stents for the Coarctation of Aorta

    Yi Huang1, Giovanni Biglino1, Fengyuan Liu2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013295

    Abstract Coarctation of aorta (CoA) is one of the congenital heart diseases with a proportion of 5% to 10%, which has a prevalence of four per 10,000 babies. As the most common cardiac defect missed at routine physical exams, CoA has a high undiagnosed rate of 60% to 80% in newborns before hospital discharge. The insertion of bare metal stents (BMS) with balloon dilatation is the useful method to reopen the narrow area of aorta. However, the stented vessel has a fixed diameter and cannot grow with the age, resulting in a relative restenosis and frequent… More >

Displaying 11-20 on page 2 of 70. Per Page