Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Identification of a dihydroorotate dehydrogenase inhibitor that inhibits cancer cell growth by proteomic profiling

    MAKOTO KAWATANI1,2,*, HARUMI AONO2, SAYOKO HIRANUMA3, TAKESHI SHIMIZU3, MAKOTO MUROI1,2, TOSHIHIKO NOGAWA4, TOMOKAZU OHISHI5, SHUN-ICHI OHBA5, MANABU KAWADA5, KANAMI YAMAZAKI6, SHINGO DAN6, NAOSHI DOHMAE1, HIROYUKI OSADA2,7,*

    Oncology Research, Vol.31, No.6, pp. 833-844, 2023, DOI:10.32604/or.2023.030241

    Abstract Dihydroorotate dehydrogenase (DHODH) is a central enzyme of the de novo pyrimidine biosynthesis pathway and is a promising drug target for the treatment of cancer and autoimmune diseases. This study presents the identification of a potent DHODH inhibitor by proteomic profiling. Cell-based screening revealed that NPD723, which is reduced to H-006 in cells, strongly induces myeloid differentiation and inhibits cell growth in HL-60 cells. H-006 also suppressed the growth of various cancer cells. Proteomic profiling of NPD723-treated cells in ChemProteoBase showed that NPD723 was clustered with DHODH inhibitors. H-006 potently inhibited human DHODH activity in vitro, whereas NPD723 was approximately… More >

  • Open Access

    REVIEW

    A comprehensive analysis of the role of molecular docking in the development of anticancer agents against the cell cycle CDK enzyme

    PRIYANKA SOLANKI1, NISARG RANA1, PRAKASH C. JHA2, ANU MANHAS1,*

    BIOCELL, Vol.47, No.4, pp. 707-729, 2023, DOI:10.32604/biocell.2023.026615

    Abstract Cancer is considered one of the most lethal diseases responsible for causing deaths worldwide. Although there have been many breakthroughs in anticancer development, cancer remains the major cause of death globally. In this regard, targeting cancer-causing enzymes is one of the efficient therapeutic strategies. Biological functions like cell cycle, transcription, metabolism, apoptosis, and other depend primarily on cyclin-dependent kinases (CDKs). These enzymes help in the replication of DNA in the normal cell cycle process, and deregulation in the functioning of any CDK can cause abnormal cell growth, which leads to cancer. This review is focused on anticancer drug discovery against… More >

Displaying 1-10 on page 1 of 2. Per Page