Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (923)
  • Open Access

    ARTICLE

    Dynamical Newton-Like Methods for Solving Ill-Conditioned Systems of Nonlinear Equations with Applications to Boundary Value Problems

    Cheng-Yu Ku1,2,3,Weichung Yeih1,2, Chein-Shan Liu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.2, pp. 83-108, 2011, DOI:10.3970/cmes.2011.076.083

    Abstract In this paper, a general dynamical method based on the construction of a scalar homotopy function to transform a vector function of Non-Linear Algebraic Equations (NAEs) into a time-dependent scalar function by introducing a fictitious time-like variable is proposed. With the introduction of a transformation matrix, the proposed general dynamical method can be transformed into several dynamical Newton-like methods including the Dynamical Newton Method (DNM), the Dynamical Jacobian-Inverse Free Method (DJIFM), and the Manifold-Based Exponentially Convergent Algorithm (MBECA). From the general dynamical method, we can also derive the conventional Newton method using a certain fictitious time-like function. The formulation presented… More >

  • Open Access

    ARTICLE

    Applications of Parameter-Expanding Method to Nonlinear Oscillators in which the Restoring Force is Inversely Proportional to the Dependent Variable or in Form of Rational Function of Dependent Variable

    Canan Köroğlu1, Turgut Öziş2

    CMES-Computer Modeling in Engineering & Sciences, Vol.75, No.3&4, pp. 223-234, 2011, DOI:10.3970/cmes.2011.075.223

    Abstract He's parameter-expanding method with an adjustment of restoring forces in terms of Chebyshev's series is used to construct approximate frequency-amplitude relations for a conservative nonlinear singular oscillator in which the restoring force is inversely proportional to the dependent variable or in form of rational function of dependant variable. The procedure is used to solve the nonlinear differential equation approximately. The approximate frequency obtained using this procedure is more accurate than those obtained using other approximate methods and the discrepancy between the approximate frequency and the exact one negligible. More >

  • Open Access

    ARTICLE

    MLPG Application of Nanofluid Flow Mixed Convection Heat Transfer in a Wavy Wall Cavity

    A. Arefmanesh1, M. Najafi2, M. Nikfar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.69, No.2, pp. 91-118, 2010, DOI:10.3970/cmes.2010.069.091

    Abstract Procuring a numerical solution through an application of the meshless local Petrov-Galerkin method (MLPG) on the fluid flow and mixed convection in a complex geometry cavity filled with a nanofluid is the scope of the present study. The cavity considered is a square enclosure having a lower temperature sliding lid at the top, a differentially higher temperature wavy wall at the bottom, and two thermally insulated walls on the sides. The nanofluid medium used is a water-based nanofluid, Al2O3-water with various volume fractions of its solid. To carry out the numerical simulations, the developed governing equations are determined in terms… More >

  • Open Access

    ARTICLE

    Error Analysis of Trefftz Methods for Laplace's Equations and Its Applications

    Z. C. Li2, T. T. Lu3, H. T. Huang4, A. H.-D. Cheng5

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.1, pp. 39-82, 2009, DOI:10.3970/cmes.2009.052.039

    Abstract For Laplace's equation and other homogeneous elliptic equations, when the particular and fundamental solutions can be found, we may choose their linear combination as the admissible functions, and obtain the expansion coefficients by satisfying the boundary conditions only. This is known as the Trefftz method (TM) (or boundary approximation methods). Since the TM is a meshless method, it has drawn great attention of researchers in recent years, and Inter. Workshops of TM and MFS (i.e., the method of fundamental solutions). A number of efficient algorithms, such the collocation algorithms, Lagrange multiplier methods, etc., have been developed in computation. However, there… More >

  • Open Access

    ARTICLE

    Application of Meshless Local Petrov-Galerkin (MLPG) Method in Cloth Simulation

    Weiran Yuan1,2, Yujun Chen2,3, André Gagalowicz2, Kaixin Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.35, No.2, pp. 133-156, 2008, DOI:10.3970/cmes.2008.035.133

    Abstract In this paper we present an approach to cloth simulation which models the deformation based on continuum mechanics and discretized with Meshless Local Petrov-Galerkin (MLPG) Method. MLPG method, which involves not only a meshless interpolation for trial functions, but also a meshless integration of the local weak form, has been considered as a general basis for the other meshless methods. By this way, the mechanical behavior of cloth is consistent and united, which is independent of the resolutions. At the same time, point sampled models, which neither have to store nor to maintain globally consistent topological information, are available for… More >

  • Open Access

    ARTICLE

    A Fictitious Time Integration Method (FTIM) for Solving Mixed Complementarity Problems with Applications to Non-Linear Optimization

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.34, No.2, pp. 155-178, 2008, DOI:10.3970/cmes.2008.034.155

    Abstract In this paper we propose a novel method for solving a nonlinear optimization problem (NOP) under multiple equality and inequality constraints. The Kuhn-Tucker optimality conditions are used to transform the NOP into a mixed complementarity problem (MCP). With the aid of (nonlinear complementarity problem) NCP-functions a set of nonlinear algebraic equations is obtained. Then we develop a fictitious time integration method to solve these nonlinear equations. Several numerical examples of optimization problems, the inverse Cauchy problems and plasticity equations are used to demonstrate that the FTIM is highly efficient to calculate the NOPs and MCPs. The present method has some… More >

  • Open Access

    ARTICLE

    Integration of Shell FEA with Geometric Modeling on NURBS Surface Representation for Practical Applications

    Maenghyo Cho1, Jinbok Choi2, Hee Yuel Roh3

    CMES-Computer Modeling in Engineering & Sciences, Vol.33, No.1, pp. 17-48, 2008, DOI:10.3970/cmes.2008.033.017

    Abstract The framework for the linkage between geometric modeling and an analysis based on the NURBS technology is developed in this study. In the present study, The NURBS surfaces were generated by interpolating a given set of data points or by extracting the necessary information to construct the NURBS surface from the IGES format file which was generated by the commercial CAD systems. Numerical examples showed the rate of displacement convergence for the various parameter-izations of the NURBS surface. Quadric surface, which is generated exactly by NURBS representation, was considered. One of the important advantages of the NURBS equation is its… More >

  • Open Access

    ARTICLE

    Remeshing and Refining with Moving Finite Elements. Application to Nonlinear Wave Problems

    A. Wacher1, D. Givoli2

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.3, pp. 147-164, 2006, DOI:10.3970/cmes.2006.015.147

    Abstract The recently proposed String Gradient Weighted Moving Finite Element (SGWMFE) method is extended to include remeshing and refining. The method simultaneously determines, at each time step, the solution of the governing partial differential equations and an optimal location of the finite element nodes. It has previously been applied to the nonlinear time-dependent two-dimensional shallow water equations, under the demanding conditions of large Coriolis forces, inducing large mesh and field rotation. Such effects are of major importance in geophysical fluid dynamics applications. Two deficiencies of the original SGWMFE method are (1) possible tangling of the mesh which causes the method's failure,… More >

  • Open Access

    ARTICLE

    Application of Boundary Element Method to Modelling of Added Mass and Its Effect on Hydrodynamic Forces

    Paola Gardano1, Peter Dabnichki1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.2, pp. 87-98, 2006, DOI:10.3970/cmes.2006.015.087

    Abstract The work presents a numerical simulation of hydrodynamic forces generated in front crawl swimming. The three dimensional Laplace's equation is used for the analysis of the flow around a moving body in an infinite domain and considers the effect of the added mass and the acceleration on the hydrodynamic forces (Drag and Lift) generated by the interaction between the flow and the body at different geometric configurations of the arm -- variable elbow angle. Boundary Element Method (BEM) was used to obtain the solution of the three dimensional equation numerically. The aim of the work was two-fold:
    1) to… More >

  • Open Access

    ARTICLE

    The Application of a Hybrid Inverse Boundary Element Problem Engine for the Solution of Potential Problems

    S. Noroozi1, P. Sewell1, J. Vinney1

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.3, pp. 171-180, 2006, DOI:10.3970/cmes.2006.014.171

    Abstract A method that combines a modified back propagation Artificial Neural Network (ANN) and Boundary Element Analysis (BEA) was introduced and discussed in the author's previous papers. This paper discusses the development of an automated inverse boundary element problem engine. This inverse problem engine can be applied to both potential and elastostatic problems.
    In this study, BEA solutions of a two-dimensional potential problem is utilised to test the system and to train a back propagation Artificial Neural Network (ANN). Once training is completed and the transfer function is created, the solution to any subsequent or new problems can be obtained… More >

Displaying 811-820 on page 82 of 923. Per Page