Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,014)
  • Open Access

    ARTICLE

    Engineering Model to Predict Behaviors of Shape Memory Alloy Wire for Vibration Applications

    M.K. Kang1, E.H. Kim1, M.S. Rim1, I. Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.3, pp. 227-250, 2010, DOI:10.3970/cmes.2010.064.227

    Abstract An engineering model for predicting the behavior of shape memory alloy (SMA) wire is presented in this study. Piecewise linear relations between stress and strain at a given temperature are assumed and the mixture rule of Reuss bounds is applied to get the elastic modulus of the SMAs in the mixed phase. Critical stresses and strains of the start and finish of the phase transformation are calculated at a given temperature by means of a linear constitutive equation and a stress-temperature diagram. Transformation conditions based on the critical stresses are translated in terms of critical More >

  • Open Access

    ARTICLE

    Development of Large Strain Shell Elements for Woven Fabrics with Application to Clothing Pressure Distribution Problem

    M. Tanaka1,2, H. Noguchi1, M. Fujikawa3,4, M. Sato3, S. Oi3, T. Kobayashi3, K. Furuichi5, S. Ishimaru5, C. Nonomura5

    CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.3, pp. 265-290, 2010, DOI:10.3970/cmes.2010.062.265

    Abstract This paper describes the development of a proper constitutive model of woven fabrics and its implementation in nonlinear finite shell elements in order to simulate the large deformation behavior of cloth. This work currently focuses on a macroscopic continuum constitutive model that is capable of capturing the realistic mechanical behavior of cloth that is characterized by two families of yarns, i.e., warp and weft. In this study, two strategies are considered. One is a rebar layer model and the other is a polyconvex anisotropic hyperelastic material model. The latter avoids non-physical behavior and can consider More >

  • Open Access

    ARTICLE

    Application of Energy Finite Element Method to High-frequency Structural-acoustic Coupling of an Aircraft Cabin with Truncated Conical Shape

    M. X. Xie1, H. L. Chen1, J. H. Wu1, F. G. Sun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.61, No.1, pp. 1-22, 2010, DOI:10.3970/cmes.2010.061.001

    Abstract Energy finite element method (EFEM) is a new method to solve high-frequency structural-acoustic coupling problems, but its use has been limited to solving simple structures such as rods, beams, plates and combined structures. In this paper, the high-frequency structural-acoustic coupling characteristics of an aircraft cabin are simulated by regarding the shell as a number of flat shell elements connected with a certain angle in EFEM. Two tests validated the method employed in this paper. First, the structural response analysis of a cylinder was calculated in two ways: dividing the shell by axis-symmetric shells after deriving… More >

  • Open Access

    ARTICLE

    On the application of the Fast Multipole Method to Helmholtz-like problems with complex wavenumber

    A. Frangi1, M. Bonnet2

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.3, pp. 271-296, 2010, DOI:10.3970/cmes.2010.058.271

    Abstract This paper presents an empirical study of the accuracy of multipole expansions of Helmholtz-like kernels with complex wavenumbers of the form k = (α + iβ)ϑ, with α = 0,±1 and β > 0, which, the paucity of available studies notwithstanding, arise for a wealth of different physical problems. It is suggested that a simple point-wise error indicator can provide an a-priori indication on the number N of terms to be employed in the Gegenbauer addition formula in order to achieve a prescribed accuracy when integrating single layer potentials over surfaces. For β ≥ 1 it More >

  • Open Access

    ARTICLE

    Analysis of a Crack in a Thin Adhesive Layer between Orthotropic Materials: An Application to Composite Interlaminar Fracture Toughness Test

    L. Távara1, V. Manticˇ 1, E. Graciani1, J. Cañas1, F. París1

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.3, pp. 247-270, 2010, DOI:10.3970/cmes.2010.058.247

    Abstract The problem of a crack in a thin adhesive layer is considered. The adherents may have orthotropic elastic behavior which allows composite laminates to be modeled. In the present work a linear elastic-brittle constitutive law of the thin adhesive layer, called weak interface model, is adopted, allowing an easy modeling of crack propagation along it. In this law, the normal and tangential stresses across the undamaged interface are proportional to the relative normal and tangential displacements, respectively. Interface crack propagation is modeled by successive breaking of the springs used to discretize the weak interface. An… More >

  • Open Access

    ARTICLE

    Green's Functions for Anisotropic/Piezoelectric Bimaterials and Their Applications to Boundary Element Analysis

    Y.C. Chen1, Chyanbin Hwu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.1, pp. 31-50, 2010, DOI:10.3970/cmes.2010.057.031

    Abstract The Green's function for anisotropic bimaterials has been investigated around three decades ago. Since the mathematical formulation of piezoelectric elasticity can be organized into the same form as that of anisotropic elasticity by just expanding the dimension of the corresponding matrix to include the piezoelectric effects, the extension of the Green's function to piezoelectric bimaterials can be obtained immediately through the associated anisotropic bimaterials. In this paper, the Green's function for the bimaterials bonded together with one anisotropic material and one piezoelectric material is derived by applying Stroh's complex variable formalism with the aid of… More >

  • Open Access

    ARTICLE

    Node Placement Method by Bubble Simulation and Its Application

    Ying Liu1, Yufeng Nie2, Weiwei Zhang2, Lei Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.1, pp. 89-110, 2010, DOI:10.3970/cmes.2010.055.089

    Abstract In the light of the ideas and treatment technologies about molecular dynamics simulation and bubble meshing, a new approach of node placement for the meshless method called node placement method by bubble simulation (NPBS method), is proposed. Nodes are seen as the centers of the bubbles which can be moved by their interacting forces. Through dynamic simulation, bubbles are placed into a near-optimal configuration, and the centers of bubbles will form a good-quality node distribution in the domain. This process doesn't need updating the mesh connection constantly, i.e., is totally meshfree. Some example results show… More >

  • Open Access

    ARTICLE

    Characterization of Undoped Spray-Deposited ZnO Thin Films of Photovoltaic Applications

    ShadiaJ. Ikhmayies1, Naseem M. Abu El-Haija1, Riyad N. Ahmad-Bitar1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.2, pp. 165-178, 2010, DOI:10.3970/fdmp.2010.006.165

    Abstract Undoped polycrystalline ZnO thin films were produced on glass substrates at a substrate temperature Ts= 450 C by the spray pyrolysis (SP) technique. The films were characterized by analyzing their I-V curves, transmittance, X-ray diffractograms (XRD) and their scanning electron microscope (SEM) images. The I-V plots are all linear and the resistivity was found to be about 200W.cm. The transmittance in the visible and near infrared regions is as high as 85% which is suitable for solar cell applications. The absorption coefficient which is deduced from the transmittance measurements is continuously increasing with the photon's… More >

  • Open Access

    ARTICLE

    Application of Cosserat Theory to the Modelling of Reinforced Carbon Nananotube Beams

    Veturia Chiroiu1, Ligia Munteanu2 and Antonio S. Gliozzi3

    CMC-Computers, Materials & Continua, Vol.19, No.1, pp. 1-16, 2010, DOI:10.3970/cmc.2010.019.001

    Abstract This paper develops a mechanical model for multifunctional reinforced carbon nanotube (CNT) beams. The model is obtained by introducing the couple stresses into the constitutive equations of linear viscoelastic theory. The material functions are determined using the homogenization method. More >

  • Open Access

    ARTICLE

    Structures with Surface-Bonded PZT Piezoelectric Patches: a BEM Investigation into the Strain-transfer Mechanism for SHM applications

    I. Benedetti1, A. Milazzo1, M.H. Aliabadi2

    Structural Durability & Health Monitoring, Vol.5, No.3, pp. 251-274, 2009, DOI:10.3970/sdhm.2009.005.251

    Abstract In this work a three-dimensional BEM model is used for the analysis of structures with cracks and surface bonded piezoelectric PZT patches used as strain sensors. The cracked structure is modelled by the dual boundary element method, which allows for accurate and reliable crack analysis, while the piezoelectric patch is analyzed by a finite element state-space approach, that embodies both the full electro-mechanical coupling and the suitable sensor's boundary conditions. The model is used to investigate the strain-transfer mechanism from an host elastic structure to the piezoelectric layer, taking into account the effect of the More >

Displaying 921-930 on page 93 of 1014. Per Page