Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (314)
  • Open Access

    ARTICLE

    Adaptation of Federated Explainable Artificial Intelligence for Efficient and Secure E-Healthcare Systems

    Rabia Abid1, Muhammad Rizwan2, Abdulatif Alabdulatif3,*, Abdullah Alnajim4, Meznah Alamro5, Mourade Azrour6

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3413-3429, 2024, DOI:10.32604/cmc.2024.046880

    Abstract Explainable Artificial Intelligence (XAI) has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning (ML) and Deep Learning (DL) based algorithms. In this paper, we chose e-healthcare systems for efficient decision-making and data classification, especially in data security, data handling, diagnostics, laboratories, and decision-making. Federated Machine Learning (FML) is a new and advanced technology that helps to maintain privacy for Personal Health Records (PHR) and handle a large amount of medical data effectively. In this context, XAI, along with FML, increases efficiency and improves the More >

  • Open Access

    ARTICLE

    Design of Artificial Intelligence Companion Chatbot

    Xiaoying Chen1,*, Jie Kang1, Cong Hu2

    Journal of New Media, Vol.6, pp. 1-16, 2024, DOI:10.32604/jnm.2024.045833

    Abstract With the development of cities and the prevalence of networks, interpersonal relationships have become increasingly distant. When people crave communication, they hope to find someone to confide in. With the rapid advancement of deep learning and big data technologies, an enabling environment has been established for the development of intelligent chatbot systems. By effectively combining cutting-edge technologies with human-centered design principles, chatbots hold the potential to revolutionize our lives and alleviate feelings of loneliness. A multi-topic chat companion robot based on a state machine has been proposed, which can engage in fluent dialogue with humans… More >

  • Open Access

    ARTICLE

    An Artificial Intelligence-Based Framework for Fruits Disease Recognition Using Deep Learning

    Irfan Haider1, Muhammad Attique Khan1,*, Muhammad Nazir1, Taerang Kim2, Jae-Hyuk Cha2

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 529-554, 2024, DOI:10.32604/csse.2023.042080

    Abstract Fruit infections have an impact on both the yield and the quality of the crop. As a result, an automated recognition system for fruit leaf diseases is important. In artificial intelligence (AI) applications, especially in agriculture, deep learning shows promising disease detection and classification results. The recent AI-based techniques have a few challenges for fruit disease recognition, such as low-resolution images, small datasets for learning models, and irrelevant feature extraction. This work proposed a new fruit leaf leaf leaf disease recognition framework using deep learning features and improved pathfinder optimization. Three fruit types have been… More >

  • Open Access

    ARTICLE

    Security Monitoring and Management for the Network Services in the Orchestration of SDN-NFV Environment Using Machine Learning Techniques

    Nasser Alshammari1, Shumaila Shahzadi2, Saad Awadh Alanazi1,*, Shahid Naseem3, Muhammad Anwar3, Madallah Alruwaili4, Muhammad Rizwan Abid5, Omar Alruwaili4, Ahmed Alsayat1, Fahad Ahmad6,7

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 363-394, 2024, DOI:10.32604/csse.2023.040721

    Abstract Software Defined Network (SDN) and Network Function Virtualization (NFV) technology promote several benefits to network operators, including reduced maintenance costs, increased network operational performance, simplified network lifecycle, and policies management. Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration (NFV MANO), and malicious attacks in different scenarios disrupt the NFV Orchestrator (NFVO) and Virtualized Infrastructure Manager (VIM) lifecycle management related to network services or individual Virtualized Network Function (VNF). This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and… More >

  • Open Access

    ARTICLE

    PCA-LSTM: An Impulsive Ground-Shaking Identification Method Based on Combined Deep Learning

    Yizhao Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3029-3045, 2024, DOI:10.32604/cmes.2024.046270

    Abstract Near-fault impulsive ground-shaking is highly destructive to engineering structures, so its accurate identification ground-shaking is a top priority in the engineering field. However, due to the lack of a comprehensive consideration of the ground-shaking characteristics in traditional methods, the generalization and accuracy of the identification process are low. To address these problems, an impulsive ground-shaking identification method combined with deep learning named PCA-LSTM is proposed. Firstly, ground-shaking characteristics were analyzed and ground-shaking the data was annotated using Baker’s method. Secondly, the Principal Component Analysis (PCA) method was used to extract the most relevant features related More >

  • Open Access

    REVIEW

    Recent Advances on Deep Learning for Sign Language Recognition

    Yanqiong Zhang, Xianwei Jiang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2399-2450, 2024, DOI:10.32604/cmes.2023.045731

    Abstract Sign language, a visual-gestural language used by the deaf and hard-of-hearing community, plays a crucial role in facilitating communication and promoting inclusivity. Sign language recognition (SLR), the process of automatically recognizing and interpreting sign language gestures, has gained significant attention in recent years due to its potential to bridge the communication gap between the hearing impaired and the hearing world. The emergence and continuous development of deep learning techniques have provided inspiration and momentum for advancing SLR. This paper presents a comprehensive and up-to-date analysis of the advancements, challenges, and opportunities in deep learning-based sign… More >

  • Open Access

    REVIEW

    A Review of the Application of Artificial Intelligence in Orthopedic Diseases

    Xinlong Diao, Xiao Wang*, Junkang Qin, Qinmu Wu, Zhiqin He, Xinghong Fan

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2617-2665, 2024, DOI:10.32604/cmc.2024.047377

    Abstract In recent years, Artificial Intelligence (AI) has revolutionized people’s lives. AI has long made breakthrough progress in the field of surgery. However, the research on the application of AI in orthopedics is still in the exploratory stage. The paper first introduces the background of AI and orthopedic diseases, addresses the shortcomings of traditional methods in the detection of fractures and orthopedic diseases, draws out the advantages of deep learning and machine learning in image detection, and reviews the latest results of deep learning and machine learning applied to orthopedic image detection in recent years, describing… More >

  • Open Access

    ARTICLE

    Exploring Sequential Feature Selection in Deep Bi-LSTM Models for Speech Emotion Recognition

    Fatma Harby1, Mansor Alohali2, Adel Thaljaoui2,3,*, Amira Samy Talaat4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2689-2719, 2024, DOI:10.32604/cmc.2024.046623

    Abstract Machine Learning (ML) algorithms play a pivotal role in Speech Emotion Recognition (SER), although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state. The examination of the emotional states of speakers holds significant importance in a range of real-time applications, including but not limited to virtual reality, human-robot interaction, emergency centers, and human behavior assessment. Accurately identifying emotions in the SER process relies on extracting relevant information from audio inputs. Previous studies on SER have predominantly utilized short-time characteristics such as Mel Frequency Cepstral Coefficients (MFCCs) due to their ability to capture… More >

  • Open Access

    ARTICLE

    Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence

    Ali Hamid Farea1,*, Omar H. Alhazmi1, Kerem Kucuk2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1525-1545, 2024, DOI:10.32604/cmc.2023.045794

    Abstract While emerging technologies such as the Internet of Things (IoT) have many benefits, they also pose considerable security challenges that require innovative solutions, including those based on artificial intelligence (AI), given that these techniques are increasingly being used by malicious actors to compromise IoT systems. Although an ample body of research focusing on conventional AI methods exists, there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures. To contribute to this nascent research stream, a novel AI-driven security system denoted as “AI2AI” is presented in this work.… More >

  • Open Access

    ARTICLE

    An Effective Hybrid Model of ELM and Enhanced GWO for Estimating Compressive Strength of Metakaolin-Contained Cemented Materials

    Abidhan Bardhan1,*, Raushan Kumar Singh2, Mohammed Alatiyyah3, Sulaiman Abdullah Alateyah4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1521-1555, 2024, DOI:10.32604/cmes.2023.044467

    Abstract This research proposes a highly effective soft computing paradigm for estimating the compressive strength (CS) of metakaolin-contained cemented materials. The proposed approach is a combination of an enhanced grey wolf optimizer (EGWO) and an extreme learning machine (ELM). EGWO is an augmented form of the classic grey wolf optimizer (GWO). Compared to standard GWO, EGWO has a better hunting mechanism and produces an optimal performance. The EGWO was used to optimize the ELM structure and a hybrid model, ELM-EGWO, was built. To train and validate the proposed ELM-EGWO model, a sum of 361 experimental results… More >

Displaying 21-30 on page 3 of 314. Per Page