Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (71)
  • Open Access


    Latent Space Representational Learning of Deep Features for Acute Lymphoblastic Leukemia Diagnosis

    Ghada Emam Atteia*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 361-376, 2023, DOI:10.32604/csse.2023.029597

    Abstract Acute Lymphoblastic Leukemia (ALL) is a fatal malignancy that is featured by the abnormal increase of immature lymphocytes in blood or bone marrow. Early prognosis of ALL is indispensable for the effectual remediation of this disease. Initial screening of ALL is conducted through manual examination of stained blood smear microscopic images, a process which is time-consuming and prone to errors. Therefore, many deep learning-based computer-aided diagnosis (CAD) systems have been established to automatically diagnose ALL. This paper proposes a novel hybrid deep learning system for ALL diagnosis in blood smear images. The introduced system integrates… More >

  • Open Access


    Effective Denoising Architecture for Handling Multiple Noises

    Na Hyoun Kim, Namgyu Kim*

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2667-2682, 2023, DOI:10.32604/csse.2023.029732

    Abstract Object detection, one of the core research topics in computer vision, is extensively used in various industrial activities. Although there have been many studies of daytime images where objects can be easily detected, there is relatively little research on nighttime images. In the case of nighttime, various types of noises, such as darkness, haze, and light blur, deteriorate image quality. Thus, an appropriate process for removing noise must precede to improve object detection performance. Although there are many studies on removing individual noise, only a few studies handle multiple noises simultaneously. In this paper, we More >

  • Open Access


    Feature Selection with Stacked Autoencoder Based Intrusion Detection in Drones Environment

    Heba G. Mohamed1, Saud S. Alotaibi2, Majdy M. Eltahir3, Heba Mohsen4, Manar Ahmed Hamza5,*, Abu Sarwar Zamani5, Ishfaq Yaseen5, Abdelwahed Motwakel5

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5441-5458, 2022, DOI:10.32604/cmc.2022.031887

    Abstract The Internet of Drones (IoD) offers synchronized access to organized airspace for Unmanned Aerial Vehicles (known as drones). The availability of inexpensive sensors, processors, and wireless communication makes it possible in real time applications. As several applications comprise IoD in real time environment, significant interest has been received by research communications. Since IoD operates in wireless environment, it is needed to design effective intrusion detection system (IDS) to resolve security issues in the IoD environment. This article introduces a metaheuristics feature selection with optimal stacked autoencoder based intrusion detection (MFSOSAE-ID) in the IoD environment. The… More >

  • Open Access


    Residual Autoencoder Deep Neural Network for Electrical Capacitance Tomography

    Wael Deabes1,2,*, Kheir Eddine Bouazza1,3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6307-6326, 2022, DOI:10.32604/cmc.2022.030420

    Abstract Great achievements have been made during the last decades in the field of Electrical Capacitance Tomography (ECT) image reconstruction. However, there is still a need to make these image reconstruction results faster and of better quality. Recently, Deep Learning (DL) is flourishing and is adopted in many fields. The DL is very good at dealing with complex nonlinear functions and it is built using several series of Artificial Neural Networks (ANNs). An ECT image reconstruction model using DNN is proposed in this paper. The proposed model mainly uses Residual Autoencoder called (ECT_ResAE). A large-scale dataset… More >

  • Open Access


    Optimal Deep Canonically Correlated Autoencoder-Enabled Prediction Model for Customer Churn Prediction

    Olfat M. Mirza1, G. Jose Moses2, R. Rajender3, E. Laxmi Lydia4, Seifedine Kadry5, Cheadchai Me-Ead6, Orawit Thinnukool7,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3757-3769, 2022, DOI:10.32604/cmc.2022.030428

    Abstract Presently, customer retention is essential for reducing customer churn in telecommunication industry. Customer churn prediction (CCP) is important to predict the possibility of customer retention in the quality of services. Since risks of customer churn also get essential, the rise of machine learning (ML) models can be employed to investigate the characteristics of customer behavior. Besides, deep learning (DL) models help in prediction of the customer behavior based characteristic data. Since the DL models necessitate hyperparameter modelling and effort, the process is difficult for research communities and business people. In this view, this study designs More >

  • Open Access


    Enhancing the Effectiveness of Trimethylchlorosilane Purification Process Monitoring with Variational Autoencoder

    Jinfu Wang1, Shunyi Zhao1,*, Fei Liu1, Zhenyi Ma2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 531-552, 2022, DOI:10.32604/cmes.2022.019521

    Abstract In modern industry, process monitoring plays a significant role in improving the quality of process conduct. With the higher dimensional of the industrial data, the monitoring methods based on the latent variables have been widely applied in order to decrease the wasting of the industrial database. Nevertheless, these latent variables do not usually follow the Gaussian distribution and thus perform unsuitable when applying some statistics indices, especially the T2 on them. Variational AutoEncoders (VAE), an unsupervised deep learning algorithm using the hierarchy study method, has the ability to make the latent variables follow the Gaussian More >

  • Open Access


    Optimal Sparse Autoencoder Based Sleep Stage Classification Using Biomedical Signals

    Ashit Kumar Dutta1,*, Yasser Albagory2, Manal Al Faraj1, Yasir A. M. Eltahir3, Abdul Rahaman Wahab Sait4

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1517-1529, 2023, DOI:10.32604/csse.2023.026482

    Abstract The recently developed machine learning (ML) models have the ability to obtain high detection rate using biomedical signals. Therefore, this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on Electroencephalography (EEG) Biomedical Signals, named OSAE-SSCEEG technique. The major intention of the OSAE-SSCEEG technique is to find the sleep stage disorders using the EEG biomedical signals. The OSAE-SSCEEG technique primarily undergoes preprocessing using min-max data normalization approach. Moreover, the classification of sleep stages takes place using the Sparse Autoencoder with Smoothed Regularization (SAE-SR) with softmax (SM) approach. Finally, the parameter optimization of the More >

  • Open Access


    Enhanced Disease Identification Model for Tea Plant Using Deep Learning

    Santhana Krishnan Jayapal1, Sivakumar Poruran2,*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1261-1275, 2023, DOI:10.32604/iasc.2023.026564

    Abstract Tea plant cultivation plays a significant role in the Indian economy. The Tea board of India supports tea farmers to increase tea production by preventing various diseases in Tea Plant. Various climatic factors and other parameters cause these diseases. In this paper, the image retrieval model is developed to identify whether the given input tea leaf image has a disease or is healthy. Automation in image retrieval is a hot topic in the industry as it doesn’t require any form of metadata related to the images for storing or retrieval. Deep Hashing with Integrated Autoencoders… More >

  • Open Access


    Energy Aware Clustering with Medical Data Classification Model in IoT Environment

    R. Bharathi1,*, T. Abirami2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 797-811, 2023, DOI:10.32604/csse.2023.025336

    Abstract With the exponential developments of wireless networking and inexpensive Internet of Things (IoT), a wide range of applications has been designed to attain enhanced services. Due to the limited energy capacity of IoT devices, energy-aware clustering techniques can be highly preferable. At the same time, artificial intelligence (AI) techniques can be applied to perform appropriate disease diagnostic processes. With this motivation, this study designs a novel squirrel search algorithm-based energy-aware clustering with a medical data classification (SSAC-MDC) model in an IoT environment. The goal of the SSAC-MDC technique is to attain maximum energy efficiency and… More >

  • Open Access


    Criss-Cross Attention Based Auto Encoder for Video Anomaly Event Detection

    Jiaqi Wang1, Jie Zhang2, Genlin Ji2,*, Bo Sheng3

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1629-1642, 2022, DOI:10.32604/iasc.2022.029535

    Abstract The surveillance applications generate enormous video data and present challenges to video analysis for huge human labor cost. Reconstruction-based convolutional autoencoders have achieved great success in video anomaly detection for their ability of automatically detecting abnormal event. The approaches learn normal patterns only with the normal data in an unsupervised way due to the difficulty of collecting anomaly samples and obtaining anomaly annotations. But convolutional autoencoders have limitations in global feature extraction for the local receptive field of convolutional kernels. What is more, 2-dimensional convolution lacks the capability of capturing temporal information while videos change… More >

Displaying 31-40 on page 4 of 71. Per Page