Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (75)
  • Open Access

    ARTICLE

    Deep Autoencoder-Based Hybrid Network for Building Energy Consumption Forecasting

    Noman Khan1,2, Samee Ullah Khan1,2, Sung Wook Baik1,2,*

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 153-173, 2024, DOI:10.32604/csse.2023.039407 - 26 January 2024

    Abstract Energy management systems for residential and commercial buildings must use an appropriate and efficient model to predict energy consumption accurately. To deal with the challenges in power management, the short-term Power Consumption (PC) prediction for household appliances plays a vital role in improving domestic and commercial energy efficiency. Big data applications and analytics have shown that data-driven load forecasting approaches can forecast PC in commercial and residential sectors and recognize patterns of electric usage in complex conditions. However, traditional Machine Learning (ML) algorithms and their features engineering procedure emphasize the practice of inefficient and ineffective… More >

  • Open Access

    ARTICLE

    An Innovative Deep Architecture for Flight Safety Risk Assessment Based on Time Series Data

    Hong Sun1, Fangquan Yang2, Peiwen Zhang3,*, Yang Jiao4, Yunxiang Zhao5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2549-2569, 2024, DOI:10.32604/cmes.2023.030131 - 15 December 2023

    Abstract With the development of the integration of aviation safety and artificial intelligence, research on the combination of risk assessment and artificial intelligence is particularly important in the field of risk management, but searching for an efficient and accurate risk assessment algorithm has become a challenge for the civil aviation industry. Therefore, an improved risk assessment algorithm (PS-AE-LSTM) based on long short-term memory network (LSTM) with autoencoder (AE) is proposed for the various supervised deep learning algorithms in flight safety that cannot adequately address the problem of the quality on risk level labels. Firstly, based on… More >

  • Open Access

    ARTICLE

    K-Hyperparameter Tuning in High-Dimensional Space Clustering: Solving Smooth Elbow Challenges Using an Ensemble Based Technique of a Self-Adapting Autoencoder and Internal Validation Indexes

    Rufus Gikera1,*, Jonathan Mwaura2, Elizaphan Muuro3, Shadrack Mambo3

    Journal on Artificial Intelligence, Vol.5, pp. 75-112, 2023, DOI:10.32604/jai.2023.043229 - 26 October 2023

    Abstract k-means is a popular clustering algorithm because of its simplicity and scalability to handle large datasets. However, one of its setbacks is the challenge of identifying the correct k-hyperparameter value. Tuning this value correctly is critical for building effective k-means models. The use of the traditional elbow method to help identify this value has a long-standing literature. However, when using this method with certain datasets, smooth curves may appear, making it challenging to identify the k-value due to its unclear nature. On the other hand, various internal validation indexes, which are proposed as a solution to this… More >

  • Open Access

    ARTICLE

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

    Qiankun Zuo1,4, Junhua Hu2, Yudong Zhang3,*, Junren Pan4, Changhong Jing4, Xuhang Chen5, Xiaobo Meng6, Jin Hong7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2129-2147, 2023, DOI:10.32604/cmes.2023.028732 - 03 August 2023

    Abstract The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders. However, it is challenging to access considerable amounts of brain functional network data, which hinders the widespread application of data-driven models in dementia diagnosis. In this study, a novel distribution-regularized adversarial graph auto-Encoder (DAGAE) with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset, improving the dementia diagnosis accuracy of data-driven… More > Graphic Abstract

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

  • Open Access

    REVIEW

    Deep Learning Applied to Computational Mechanics: A Comprehensive Review, State of the Art, and the Classics

    Loc Vu-Quoc1,*, Alexander Humer2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1069-1343, 2023, DOI:10.32604/cmes.2023.028130 - 26 June 2023

    Abstract Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting… More >

  • Open Access

    ARTICLE

    Missing Value Imputation Model Based on Adversarial Autoencoder Using Spatiotemporal Feature Extraction

    Dong-Hoon Shin1, Seo-El Lee2, Byeong-Uk Jeon1, Kyungyong Chung3,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1925-1940, 2023, DOI:10.32604/iasc.2023.039317 - 21 June 2023

    Abstract Recently, the importance of data analysis has increased significantly due to the rapid data increase. In particular, vehicle communication data, considered a significant challenge in Intelligent Transportation Systems (ITS), has spatiotemporal characteristics and many missing values. High missing values in data lead to the decreased predictive performance of models. Existing missing value imputation models ignore the topology of transportation networks due to the structural connection of road networks, although physical distances are close in spatiotemporal image data. Additionally, the learning process of missing value imputation models requires complete data, but there are limitations in securing More >

  • Open Access

    ARTICLE

    MEM-TET: Improved Triplet Network for Intrusion Detection System

    Weifei Wang1, Jinguo Li1,*, Na Zhao2, Min Liu1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 471-487, 2023, DOI:10.32604/cmc.2023.039733 - 08 June 2023

    Abstract With the advancement of network communication technology, network traffic shows explosive growth. Consequently, network attacks occur frequently. Network intrusion detection systems are still the primary means of detecting attacks. However, two challenges continue to stymie the development of a viable network intrusion detection system: imbalanced training data and new undiscovered attacks. Therefore, this study proposes a unique deep learning-based intrusion detection method. We use two independent in-memory autoencoders trained on regular network traffic and attacks to capture the dynamic relationship between traffic features in the presence of unbalanced training data. Then the original data is… More >

  • Open Access

    ARTICLE

    Alzheimer’s Disease Stage Classification Using a Deep Transfer Learning and Sparse Auto Encoder Method

    Deepthi K. Oommen*, J. Arunnehru

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 793-811, 2023, DOI:10.32604/cmc.2023.038640 - 08 June 2023

    Abstract Alzheimer’s Disease (AD) is a progressive neurological disease. Early diagnosis of this illness using conventional methods is very challenging. Deep Learning (DL) is one of the finest solutions for improving diagnostic procedures’ performance and forecast accuracy. The disease’s widespread distribution and elevated mortality rate demonstrate its significance in the older-onset and younger-onset age groups. In light of research investigations, it is vital to consider age as one of the key criteria when choosing the subjects. The younger subjects are more susceptible to the perishable side than the older onset. The proposed investigation concentrated on the… More >

  • Open Access

    ARTICLE

    Unsupervised Anomaly Detection Approach Based on Adversarial Memory Autoencoders for Multivariate Time Series

    Tianzi Zhao1,2,3,4, Liang Jin1,2,3,*, Xiaofeng Zhou1,2,3, Shuai Li1,2,3, Shurui Liu1,2,3,4, Jiang Zhu1,2,3

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 329-346, 2023, DOI:10.32604/cmc.2023.038595 - 08 June 2023

    Abstract The widespread usage of Cyber Physical Systems (CPSs) generates a vast volume of time series data, and precisely determining anomalies in the data is critical for practical production. Autoencoder is the mainstream method for time series anomaly detection, and the anomaly is judged by reconstruction error. However, due to the strong generalization ability of neural networks, some abnormal samples close to normal samples may be judged as normal, which fails to detect the abnormality. In addition, the dataset rarely provides sufficient anomaly labels. This research proposes an unsupervised anomaly detection approach based on adversarial memory… More >

  • Open Access

    ARTICLE

    Visual Motion Segmentation in Crowd Videos Based on Spatial-Angular Stacked Sparse Autoencoders

    Adel Hafeezallah1, Ahlam Al-Dhamari2,3,*, Syed Abd Rahman Abu-Bakar2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 593-611, 2023, DOI:10.32604/csse.2023.039479 - 26 May 2023

    Abstract Visual motion segmentation (VMS) is an important and key part of many intelligent crowd systems. It can be used to figure out the flow behavior through a crowd and to spot unusual life-threatening incidents like crowd stampedes and crashes, which pose a serious risk to public safety and have resulted in numerous fatalities over the past few decades. Trajectory clustering has become one of the most popular methods in VMS. However, complex data, such as a large number of samples and parameters, makes it difficult for trajectory clustering to work well with accurate motion segmentation… More >

Displaying 11-20 on page 2 of 75. Per Page