Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    A Comparative Study on Hydrodynamic Optimization Approaches for AUV Design Using CFD

    KL Vasudev1, Manish Pandey2, Jaan H. Pu3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1545-1569, 2025, DOI:10.32604/fdmp.2025.065289 - 31 July 2025

    Abstract This study presents a comparative analysis of optimisation strategies for designing hull shapes of Autonomous Underwater Vehicles (AUVs), paying special attention to drag, lift-to-drag ratio, and delivered power. A fully integrated optimisation framework is developed accordingly, combining a single-objective Genetic Algorithm (GA) for design parameter generation, Computer-Aided Geometric Design (CAGD) for the creation of hull geometries and associated fluid domains, and a Reynolds-Averaged Navier–Stokes (RANS) solver for evaluating hydrodynamic performance metrics. This unified approach eliminates manual intervention, enabling automated determination of optimal hull configurations. Three distinct optimisation problems are addressed using the proposed methodology. First,… More >

  • Open Access

    ARTICLE

    Simultaneous Depth and Heading Control for Autonomous Underwater Vehicle Docking Maneuvers Using Deep Reinforcement Learning within a Digital Twin System

    Yu-Hsien Lin*, Po-Cheng Chuang, Joyce Yi-Tzu Huang

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4907-4948, 2025, DOI:10.32604/cmc.2025.065995 - 30 July 2025

    Abstract This study proposes an automatic control system for Autonomous Underwater Vehicle (AUV) docking, utilizing a digital twin (DT) environment based on the HoloOcean platform, which integrates six-degree-of-freedom (6-DOF) motion equations and hydrodynamic coefficients to create a realistic simulation. Although conventional model-based and visual servoing approaches often struggle in dynamic underwater environments due to limited adaptability and extensive parameter tuning requirements, deep reinforcement learning (DRL) offers a promising alternative. In the positioning stage, the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm is employed for synchronized depth and heading control, which offers stable training, reduced overestimation… More >

  • Open Access

    ARTICLE

    Path Planning for AUVs Based on Improved APF-AC Algorithm

    Guojun Chen*, Danguo Cheng, Wei Chen, Xue Yang, Tiezheng Guo

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3721-3741, 2024, DOI:10.32604/cmc.2024.047325 - 26 March 2024

    Abstract With the increase in ocean exploration activities and underwater development, the autonomous underwater vehicle (AUV) has been widely used as a type of underwater automation equipment in the detection of underwater environments. However, nowadays AUVs generally have drawbacks such as weak endurance, low intelligence, and poor detection ability. The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks. To improve the underwater operation ability of the AUV, this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm. In response to… More >

  • Open Access

    ARTICLE

    Improved U-Net-Based Novel Segmentation Algorithm for Underwater Mineral Image

    Haolin Wang1, Lihui Dong1, Wei Song1,2,3,*, Xiaobin Zhao1,3, Jianxin Xia4, Tongmu Liu5

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1573-1586, 2022, DOI:10.32604/iasc.2022.023994 - 09 December 2021

    Abstract Autonomous underwater vehicle (AUV) has many intelligent optical system, which can collect underwater signal information to make the system decision. One of them is the intelligent vision system, and it can capture the images to analyze. The performance of the particle image segmentation plays an important role in the monitoring of underwater mineral resources. In order to improve the underwater mineral image segmentation performance, some novel segmentation algorithm architectures are proposed. In this paper, an improved mineral image segmentation is proposed based on the modified U-Net. The pyramid upsampling module and residual module are bring More >

  • Open Access

    ARTICLE

    A Fuzzy-Based Bio-Inspired Neural Network Approach for Target Search by Multiple Autonomous Underwater Vehicles in Underwater Environments

    Aolin Sun, Xiang Cao*, Xu Xiao, Liwen Xu

    Intelligent Automation & Soft Computing, Vol.27, No.2, pp. 551-564, 2021, DOI:10.32604/iasc.2021.01008 - 18 January 2021

    Abstract An essential issue in a target search is safe navigation while quickly finding targets. In order to improve the efficiency of a target search and the smoothness of AUV’s (Autonomous Underwater Vehicle) trajectory, a fuzzy-based bio-inspired neural network approach is proposed in this paper. A bio-inspired neural network is applied to a multi-AUV target search, which can effectively plan search paths. In the meantime, a fuzzy algorithm is introduced into the bio-inspired neural network to make the trajectory of AUV obstacle avoidance smoother. Unlike other algorithms that need repeated training in the parameters selection, the More >

  • Open Access

    ARTICLE

    AUV Global Security Path Planning Based on a Potential Field Bio-Inspired Neural Network in Underwater Environment

    Xiang Cao1,2,*, Ling Chen1, Liqiang Guo3, Wei Han4

    Intelligent Automation & Soft Computing, Vol.27, No.2, pp. 391-407, 2021, DOI:10.32604/iasc.2021.01002 - 18 January 2021

    Abstract As one of the classical problems in autonomous underwater vehicle (AUV) research, path planning has obtained a lot of research results. Many studies have focused on planning an optimal path for AUVs. These optimal paths are sometimes too close to obstacles. In the real environment, it is difficult for AUVs to avoid obstacles according to such an optimal path. To solve the safety problem of AUV path planning in a dynamic uncertain environment, an algorithm combining a bio-inspired neural network and potential field is proposed. Based on the environmental information, the bio-inspired neural network plans More >

  • Open Access

    ARTICLE

    Online AUV Path Replanning Using Quantum-Behaved Particle Swarm Optimization with Selective Differential Evolution

    Hui Sheng Lim1,*, Christopher K. H. Chin1, Shuhong Chai1, Neil Bose1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 33-50, 2020, DOI:10.32604/cmes.2020.011648 - 18 September 2020

    Abstract This paper presents an online AUV (autonomous underwater vehicle) path planner that employs path replanning approach and the SDEQPSO (selective differential evolution-hybridized quantum-behaved particle swarm optimization) algorithm to optimize an AUV mission conducted in an unknown, dynamic and cluttered ocean environment. The proposed path replanner considered the effect of ocean currents in path optimization to generate a Pareto-optimal path that guides the AUV to its target within minimum time. The optimization was based on the onboard sensor data measured from the environment, which consists of a priori unknown dynamic obstacles and spatiotemporal currents. Different sensor… More >

  • Open Access

    ARTICLE

    Dynamic Task Assignment for Multi-AUV Cooperative Hunting

    Xiang Cao1,2,3, Haichun Yu1,3, Hongbing Sun1,3

    Intelligent Automation & Soft Computing, Vol.25, No.1, pp. 25-34, 2019, DOI:10.31209/2018.100000038

    Abstract For cooperative hunting by a multi-AUV (multiple autonomous underwater vehicles) team, not only basic problems such as path planning and collision avoidance should be considered but also task assignments in a dynamic way. In this paper, an integrated algorithm is proposed by combining the self-organizing map (SOM) neural network and the Glasius Bio-Inspired Neural Network (GBNN) approach to improve the efficiency of multi-AUV cooperative hunting. With this integrated algorithm, the SOM neural network is adopted for dynamic allocation, while the GBNN is employed for path planning. It deals with various situations for single/multiple target(s) hunting More >

  • Open Access

    ARTICLE

    Lever Arm Compensation of Autonomous Underwater Vehicle for Fast Transfer Alignment

    Qi Wang1,2,*, Changsong Yang1,2, Shaoen Wu3, Yuxiang Wang1,2

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 105-118, 2019, DOI:10.32604/cmc.2019.03739

    Abstract Transfer alignment is used to initialize SINS (Strapdown Inertial Navigation System) in motion. Lever-arm effect compensation is studied existing in an AUV (Autonomous Underwater Vehicle) before launched from the mother ship. The AUV is equipped with SINS, Doppler Velocity Log, depth sensor and other navigation sensors. The lever arm will cause large error on the transfer alignment between master inertial navigation system and slave inertial navigation system, especially in big ship situations. This paper presents a novel method that can effectively estimate and compensate the flexural lever arm between the main inertial navigation system mounted… More >

Displaying 1-10 on page 1 of 9. Per Page