Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8,823)
  • Open Access

    ARTICLE

    The Relationship between Parental Marital Conflict and Adolescent Short Video Dependence: A Chain Mediation Model

    Lei Yang, Yang Liu*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.073529 - 28 January 2026

    Abstract Background: This study aims to investigate the underlying mechanisms between parental marital conflict and adolescent short video dependence by constructing a chain mediation model, focusing on the mediating roles of experiential avoidance and emotional disturbance (anxiety, depression, and stress). Methods: Conducted in January 2025, the research recruited 4125 adolescents from multiple Chinese provinces through convenience sampling; after data cleaning, 3957 valid participants (1959 males, 1998 females) were included. Using a cross-sectional design, measures included parental marital conflict, experiential avoidance, anxiety, depression, stress, and short video dependence. Results: Pearson correlation analysis revealed significant positive correlations among all variables.… More >

  • Open Access

    ARTICLE

    Mindfulness-Based Stress Reduction for Caregiving Stress in Parents of Children with Leukemia

    Jinpan Wang1,#, Yue Yuan2,#,*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.071212 - 28 January 2026

    Abstract Background: Childhood leukemia, a malignant proliferative disorder of the hematopoietic system and the most common childhood cancer, poses a significant threat to the lives and health of affected children. For parents, a leukemia diagnosis in their child is a profoundly traumatic event. As primary caregivers, they endure immense psychological distress and caregiving stress throughout the prolonged and demanding treatment process, which can adversely affect their own well-being and caregiving capacity. However, the psychological mechanisms, such as the role of mindfulness, linking caregiver stress to parental coping strategies remain underexplored, and evidence-based interventions to support these parents… More >

  • Open Access

    ARTICLE

    A Subdomain-Based GPU Parallel Scheme for Accelerating Perdynamics Modeling with Reduced Graphics Memory

    Zuokun Yang1, Jun Li1,2,*, Xin Lai1,2, Lisheng Liu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075980 - 29 January 2026

    Abstract Peridynamics (PD) demonstrates unique advantages in addressing fracture problems, however, its nonlocality and meshfree discretization result in high computational and storage costs. Moreover, in its engineering applications, the computational scale of classical GPU parallel schemes is often limited by the finite graphics memory of GPU devices. In the present study, we develop an efficient particle information management strategy based on the cell-linked list method and on this basis propose a subdomain-based GPU parallel scheme, which exhibits outstanding acceleration performance in specific compute kernels while significantly reducing graphics memory usage. Compared to the classical parallel scheme,… More >

  • Open Access

    ARTICLE

    A Robust Vision-Based Framework for Traffic Sign and Light Detection in Automated Driving Systems

    Mohammed Al-Mahbashi1,2,*, Ali Ahmed3, Abdolraheem Khader4,*, Shakeel Ahmad3, Mohamed A. Damos5, Ahmed Abdu6

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075909 - 29 January 2026

    Abstract Reliable detection of traffic signs and lights (TSLs) at long range and under varying illumination is essential for improving the perception and safety of autonomous driving systems (ADS). Traditional object detection models often exhibit significant performance degradation in real-world environments characterized by high dynamic range and complex lighting conditions. To overcome these limitations, this research presents FED-YOLOv10s, an improved and lightweight object detection framework based on You Only look Once v10 (YOLOv10). The proposed model integrates a C2f-Faster block derived from FasterNet to reduce parameters and floating-point operations, an Efficient Multiscale Attention (EMA) mechanism to More >

  • Open Access

    ARTICLE

    MCPSFOA: Multi-Strategy Enhanced Crested Porcupine-Starfish Optimization Algorithm for Global Optimization and Engineering Design

    Hao Chen1, Tong Xu1, Yutian Huang2, Dabo Xin1,*, Changting Zhong1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075792 - 29 January 2026

    Abstract Optimization problems are prevalent in various fields of science and engineering, with several real-world applications characterized by high dimensionality and complex search landscapes. Starfish optimization algorithm (SFOA) is a recently optimizer inspired by swarm intelligence, which is effective for numerical optimization, but it may encounter premature and local convergence for complex optimization problems. To address these challenges, this paper proposes the multi-strategy enhanced crested porcupine-starfish optimization algorithm (MCPSFOA). The core innovation of MCPSFOA lies in employing a hybrid strategy to improve SFOA, which integrates the exploratory mechanisms of SFOA with the diverse search capacity of… More >

  • Open Access

    ARTICLE

    Real-Time Mouth State Detection Based on a BiGRU-CLPSO Hybrid Model with Facial Landmark Detection for Healthcare Monitoring Applications

    Mong-Fong Horng1,#, Thanh-Lam Nguyen1,#, Thanh-Tuan Nguyen2,*, Chin-Shiuh Shieh1,*, Lan-Yuen Guo3, Chen-Fu Hung4, Chun-Chih Lo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075064 - 29 January 2026

    Abstract The global population is rapidly expanding, driving an increasing demand for intelligent healthcare systems. Artificial intelligence (AI) applications in remote patient monitoring and diagnosis have achieved remarkable progress and are emerging as a major development trend. Among these applications, mouth motion tracking and mouth-state detection represent an important direction, providing valuable support for diagnosing neuromuscular disorders such as dysphagia, Bell’s palsy, and Parkinson’s disease. In this study, we focus on developing a real-time system capable of monitoring and detecting mouth state that can be efficiently deployed on edge devices. The proposed system integrates the Facial… More >

  • Open Access

    ARTICLE

    Learning-Based Prediction of Soft-Tissue Motion for Latency Compensation in Teleoperation

    Guangyu Xu1,2, Yuxin Liu1, Bo Yang1, Siyu Lu3,*, Chao Liu4, Junmin Lyu5, Wenfeng Zheng1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074938 - 29 January 2026

    Abstract Soft-tissue motion introduces significant challenges in robotic teleoperation, especially in medical scenarios where precise target tracking is critical. Latency across sensing, computation, and actuation chains leads to degraded tracking performance, particularly around high-acceleration segments and trajectory inflection points. This study investigates machine learning-based predictive compensation for latency mitigation in soft-tissue tracking. Three models—autoregressive (AR), long short-term memory (LSTM), and temporal convolutional network (TCN)—were implemented and evaluated on both synthetic and real datasets. By aligning the prediction horizon with the end-to-end system delay, we demonstrate that prediction-based compensation significantly reduces tracking errors. Among the models, TCN More >

  • Open Access

    ARTICLE

    Integrating Carbonation Durability and Cover Scaling into Low-Carbon Concrete Design: A New Framework for Sustainable Slag-Based Mixtures

    Kang-Jia Wang1, Hongzhi Zhang2, Runsheng Lin3,*, Jiabin Li4, Xiao-Yong Wang1,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074787 - 29 January 2026

    Abstract Conventional low-carbon concrete design approaches have often overlooked carbonation durability and the progressive loss of cover caused by surface scaling, both of which can increase the long-term risk of reinforcement corrosion. To address these limitations, this study proposes an improved design framework for low-carbon slag concrete that simultaneously incorporates carbonation durability and cover scaling effects into the mix proportioning process. Based on experimental data, a linear predictive model was developed to estimate the 28-day compressive strength of slag concrete, achieving a correlation coefficient of R = 0.87711 and a root mean square error (RMSE) of… More >

  • Open Access

    ARTICLE

    Multipoint Deformation Prediction Model Based on Clustering Partition of Extra High-Arch Dams

    Bin Ou1,2,3,4, Haoquan Chi1,3, Xu’an Qian1,3, Shuyan Fu1,3, Zhirui Miao1,3, Dingzhu Zhao1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.074757 - 29 January 2026

    Abstract Deformation prediction for extra-high arch dams is highly important for ensuring their safe operation. To address the challenges of complex monitoring data, the uneven spatial distribution of deformation, and the construction and optimization of a prediction model for deformation prediction, a multipoint ultrahigh arch dam deformation prediction model, namely, the CEEMDAN-KPCA-GSWOA-KELM, which is based on a clustering partition, is proposed. First, the monitoring data are preprocessed via variational mode decomposition (VMD) and wavelet denoising (WT), which effectively filters out noise and improves the signal-to-noise ratio of the data, providing high-quality input data for subsequent prediction… More > Graphic Abstract

    Multipoint Deformation Prediction Model Based on Clustering Partition of Extra High-Arch Dams

  • Open Access

    ARTICLE

    Gradient Descent-Based Prediction of Heat-Transmission Rate of Engine Oil-Based Hybrid Nanofluid over Trapezoidal and Rectangular Fins for Sustainable Energy Systems

    Maddina Dinesh Kumar1,#, S. U. Mamatha2, Khalid Masood3, Nehad Ali Shah4,#, Se-Jin Yook1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074680 - 29 January 2026

    Abstract Fluid dynamic research on rectangular and trapezoidal fins is aimed at increasing heat transfer by means of large surfaces. The trapezoidal cavity form is compared with its thermal and flow performance, and it is revealed that trapezoidal fins tend to be more efficient, particularly when material optimization is critical. Motivated by the increasing need for sustainable energy management, this work analyses the thermal performance of inclined trapezoidal and rectangular porous fins utilising a unique hybrid nanofluid. The effectiveness of nanoparticles in a working fluid is primarily determined by their thermophysical properties; hence, optimising these properties… More >

Displaying 11-20 on page 2 of 8823. Per Page