Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (71)
  • Open Access

    ARTICLE

    Debonding Failure in FRP Reinforced SHCC Beams Induced from Multiple Flexural-Shear Cracks under Three-Point Bending Test

    Jihong Hu, Mingqing Sun*, Wei Huang, Yingjun Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.1, pp. 191-207, 2021, DOI:10.32604/cmes.2021.015365

    Abstract Strain hardening cement-based composites (SHCC) beam externally bonded with glass fiber-reinforced polymer (FRP) plate was examined under three-point flexural test. The effects of the type of substrate used (plain cement mortar vs. SHCC), the use or not of a FRP plate to strengthen the SHCC beam, and the thickness of the FRP plate on the flexural performances were studied. Results show that the ultimate load of SHCC beams strengthened with FRP plate has improved greatly in comparison with plain SHCC beams. The deformation capacity of beams makes little change with an increase in the thickness of FRP plates. The formation… More >

  • Open Access

    ARTICLE

    Peridynamic Modeling and Simulation of Fracture Process in Fiber-Reinforced Concrete

    Zhuang Chen1, Xihua Chu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.1, pp. 241-272, 2021, DOI:10.32604/cmes.2021.015120

    Abstract In this study, a peridynamic fiber-reinforced concrete model is developed based on the bond-based peridynamic model with rotation effect (BBPDR). The fibers are modelled by a semi-discrete method and distributed with random locations and angles in the concrete specimen, since the fiber content is low, and its scale is smaller than the concrete matrix. The interactions between fibers and concrete matrix are investigated by the improvement of the bond’s strength and stiffness. Also, the frictional effect between the fibers and the concrete matrix is considered, which is divided into static friction and slip friction. To validate the proposed model, several… More >

  • Open Access

    ARTICLE

    Behavior of High Strength Concrete Filled Square Steel Tube Stub Columns with Inner CFRP Tube Under Biaxial Eccentric Compression

    Zhijian Yang1, Guochang Li1,*, Yan Lang2, Zengmei Qiu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.1, pp. 273-290, 2021, DOI:10.32604/cmes.2021.014606

    Abstract This paper studies the contribution of CFRP (carbon fiber-reinforced polymer) to the mechanical behavior of high strength concrete-filled square steel tube (HCFST) under biaxial eccentric compression. The new type of composite member is composed of an inner CFRP tube and an outer steel tube with concrete filled in the two tubes. The finite element analysis was made by ABAQUS on the behavior of high strength concrete filled square steel tubular columns with inner CFRP circular tube subjected to bi-axial eccentric loading. The results obtained from the finite element analysis were verified with the experimental results. In addition, the load-deflection curves… More >

  • Open Access

    ARTICLE

    Nodes Effect on the Bending Performance of Laminated Bamboo Lumber Unit

    Yiwei Xuan1,3, Haitao Li1,*, Zhemin Bei1, Zhenhua Xiong2, Rodolfo Lorenzo4, Ileana Corbi5, Ottavia Corbi5

    Journal of Renewable Materials, Vol.9, No.6, pp. 1143-1156, 2021, DOI:10.32604/jrm.2021.015292

    Abstract This research studied the ultimate bearing capacity of laminated bamboo lumber (LBL) unit and thereby calculated the maximum bending moment. The load-displacement chart for all specimens was obtained. Then the flexural capacity of members with and without bamboo nodes in the middle section was coMPared. The bending experiment phenomenon of LBL unit was concluded. Different failure modes of bending components were analysed and concluded. Finally, the bending behaviour of LBL units is coMPared with other bamboo and timber products. It is shown that the average ultimate load of BS members is 866.1 N, the average flexural strength is 101 MPa,… More >

  • Open Access

    ARTICLE

    Fabrication and Statics Performance of Pyramidal Lattice Stitched Foam Sandwich Composites

    Yun Zhao, Shi Yan*, Jiale Jia

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 1251-1274, 2021, DOI:10.32604/cmes.2021.013478

    Abstract In this study, the pyramidal lattice stitched foam sandwich composite materials were manufactured by integrating top and bottom panels with pyramidal lattice core to overcome the weak interface between the core and the skins of the sandwich structure. The influence of the reinforcing core rods on the mechanical properties including compressive, shear, and three-point bending performances of the foam sandwich composite materials were revealed through theoretical analysis and comparative experiments. The theoretical predictions were consistent with the experimental results. Compressive test, shear test and three-point bending test were performed. The experimental results show that the core rods can significantly improve… More >

  • Open Access

    ARTICLE

    Damping Analysis and Failure Mechanism of 3D Printed Bio-Based Sandwich with Auxetic Core under Bending Fatigue Loading

    Khawla Essassi1,2,*, Jean-Luc Rebiere1, Abderrahim El Mahi1, Mohamed Amine Ben Souf2, Anas Bouguecha2, Mohamed Haddar2

    Journal of Renewable Materials, Vol.9, No.3, pp. 569-584, 2021, DOI:10.32604/jrm.2021.012253

    Abstract Meta-sandwich composites with three-dimensional (3D) printed architecture structure are characterized by their high ability to absorb energy. In this paper, static and fatigue 3-point bending tests are implemented on a 3D printed sandwich composites with a re-entrant honeycomb core. The skins, core and whole sandwich are manufactured using the same bio-based material which is polylactic acid with flax fiber reinforcement. Experimental tests are performed in order to evaluate the durability and the ability of this material to dissipate energy. First, static tests are conducted to study the bending behaviour of the sandwich beams, as well as to determine the failure… More >

  • Open Access

    ARTICLE

    Long-Term Bending Behaviour of Prestressed Glulam Bamboo-Wood Beam Based on Creep Effect

    Nan Guo1,*, Huajing Xiong1, Mingtao Wu1, Hongliang Zuo1, Fengguo Jiang2, Xiaofeng Hou3, Dabo Xin1

    Structural Durability & Health Monitoring, Vol.14, No.3, pp. 229-248, 2020, DOI:10.32604/sdhm.2020.09104

    Abstract Creep is an important characteristic of bamboo and wood materials under long-term loading. This paper aims to study the long-term bending behaviour of prestressed glulam bamboo-wood beam (GBWB). For this, 14 pre-stressed GBWBs were selected and subjected to a long-term loading test for 60 days. Then, a comparative analysis was performed for the effects of pretension values, the number of pre-stressed wires, and long-term load on the stress variation of the steel wire and the long-term deflection of the beam midspan. The test results showed that with the number of prestressed wires increasing, the total stress of the steel wire… More >

  • Open Access

    ARTICLE

    Closure Effect Evaluation of Surface Crack Growth under Cyclic Bending using S-FEM

    Masanori Kikuchi1, Kazuhiro Suga1

    Structural Durability & Health Monitoring, Vol.6, No.3&4, pp. 289-304, 2010, DOI:10.3970/sdhm.2010.006.289

    Abstract Crack closure effect on interaction of two surface crack growth processes by fatigue is studied. At first, change of C value in Paris' law along crack front of single surface crack is measured experimentally. It is shown that C value decreases near specimen surface. Crack closure effect is studied numerically for a surface crack by elastic-plastic cyclic analyses. It is found that closure effect appears more strongly near specimen surface than the maximum-depth point. By determining effective stress intensity factor including closure effect, it is shown that change of C value is equal to the change of closure effect along… More >

  • Open Access

    ARTICLE

    Deriving Shear Correction Factor for Thick Laminated Plates Using the Energy Equivalence Method

    H. Hadavinia1, K. Gordnian1, J. Karwatzki1, A. Aboutorabi1

    Structural Durability & Health Monitoring, Vol.2, No.4, pp. 197-206, 2006, DOI:10.3970/sdhm.2006.002.197

    Abstract The cylindrical bending of thick laminated sandwich plates under static loading is studied based on the first order shear deformation theory (FSDT). FSDT generally requires a shear correction factor (SCF) to account for the deflection owing to the transverse shear. In this paper the SCF is derived using energy equivalence method. It is shown that depending on the mechanical and geometrical properties of the layers, the contribution of the transverse shear stress to the maximum deflection of the plate is variable and in some cases account for up to around 88% of the total deflection. The effects of non-dimensional parameters… More >

  • Open Access

    ARTICLE

    The MLPG for Bending of Electroelastic Plates

    J. Sladek1, V. Sladek1, P. Stanak1, E. Pan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.3, pp. 267-298, 2010, DOI:10.3970/cmes.2010.064.267

    Abstract The plate equations are obtained by means of an appropriate expansion of the mechanical displacement and electric potential in powers of the thickness coordinate in the variational equation of electroelasticity and integration through the thickness. The appropriate assumptions are made to derive the uncoupled equations for the extensional and flexural motion. The present approach reduces the original 3-D plate problem to a 2-D problem, with all the unknown quantities being localized in the mid-plane of the plate. A meshless local Petrov-Galerkin (MLPG) method is then applied to solve the problem. Nodal points are randomly spread in the mid-plane of the… More >

Displaying 21-30 on page 3 of 71. Per Page