Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Robust False Data Injection Identification Framework for Power Systems Using Explainable Deep Learning

    Ghadah Aldehim, Shakila Basheer, Ala Saleh Alluhaidan, Sapiah Sakri*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3599-3619, 2025, DOI:10.32604/cmc.2025.065643 - 23 September 2025

    Abstract Although digital changes in power systems have added more ways to monitor and control them, these changes have also led to new cyber-attack risks, mainly from False Data Injection (FDI) attacks. If this happens, the sensors and operations are compromised, which can lead to big problems, disruptions, failures and blackouts. In response to this challenge, this paper presents a reliable and innovative detection framework that leverages Bidirectional Long Short-Term Memory (Bi-LSTM) networks and employs explanatory methods from Artificial Intelligence (AI). Not only does the suggested architecture detect potential fraud with high accuracy, but it also… More >

  • Open Access

    ARTICLE

    ARNet: Integrating Spatial and Temporal Deep Learning for Robust Action Recognition in Videos

    Hussain Dawood1, Marriam Nawaz2, Tahira Nazir3, Ali Javed2, Abdul Khader Jilani Saudagar4,*, Hatoon S. AlSagri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 429-459, 2025, DOI:10.32604/cmes.2025.066415 - 31 July 2025

    Abstract Reliable human action recognition (HAR) in video sequences is critical for a wide range of applications, such as security surveillance, healthcare monitoring, and human-computer interaction. Several automated systems have been designed for this purpose; however, existing methods often struggle to effectively integrate spatial and temporal information from input samples such as 2-stream networks or 3D convolutional neural networks (CNNs), which limits their accuracy in discriminating numerous human actions. Therefore, this study introduces a novel deep-learning framework called the ARNet, designed for robust HAR. ARNet consists of two main modules, namely, a refined InceptionResNet-V2-based CNN and… More >

  • Open Access

    ARTICLE

    A Deep Learning Framework for Arabic Cyberbullying Detection in Social Networks

    Yahya Tashtoush1,*, Areen Banysalim1, Majdi Maabreh2, Shorouq Al-Eidi3, Ola Karajeh4, Plamen Zahariev5

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3113-3134, 2025, DOI:10.32604/cmc.2025.062724 - 16 April 2025

    Abstract Social media has emerged as one of the most transformative developments on the internet, revolutionizing the way people communicate and interact. However, alongside its benefits, social media has also given rise to significant challenges, one of the most pressing being cyberbullying. This issue has become a major concern in modern society, particularly due to its profound negative impacts on the mental health and well-being of its victims. In the Arab world, where social media usage is exceptionally high, cyberbullying has become increasingly prevalent, necessitating urgent attention. Early detection of harmful online behavior is critical to… More >

  • Open Access

    ARTICLE

    DeepBio: A Deep CNN and Bi-LSTM Learning for Person Identification Using Ear Biometrics

    Anshul Mahajan*, Sunil K. Singla

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1623-1649, 2024, DOI:10.32604/cmes.2024.054468 - 27 September 2024

    Abstract The identification of individuals through ear images is a prominent area of study in the biometric sector. Facial recognition systems have faced challenges during the COVID-19 pandemic due to mask-wearing, prompting the exploration of supplementary biometric measures such as ear biometrics. The research proposes a Deep Learning (DL) framework, termed DeepBio, using ear biometrics for human identification. It employs two DL models and five datasets, including IIT Delhi (IITD-I and IITD-II), annotated web images (AWI), mathematical analysis of images (AMI), and EARVN1. Data augmentation techniques such as flipping, translation, and Gaussian noise are applied to More >

  • Open Access

    ARTICLE

    Exploring Sequential Feature Selection in Deep Bi-LSTM Models for Speech Emotion Recognition

    Fatma Harby1, Mansor Alohali2, Adel Thaljaoui2,3,*, Amira Samy Talaat4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2689-2719, 2024, DOI:10.32604/cmc.2024.046623 - 27 February 2024

    Abstract Machine Learning (ML) algorithms play a pivotal role in Speech Emotion Recognition (SER), although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state. The examination of the emotional states of speakers holds significant importance in a range of real-time applications, including but not limited to virtual reality, human-robot interaction, emergency centers, and human behavior assessment. Accurately identifying emotions in the SER process relies on extracting relevant information from audio inputs. Previous studies on SER have predominantly utilized short-time characteristics such as Mel Frequency Cepstral Coefficients (MFCCs) due to their ability to capture… More >

  • Open Access

    ARTICLE

    A Time Series Intrusion Detection Method Based on SSAE, TCN and Bi-LSTM

    Zhenxiang He*, Xunxi Wang, Chunwei Li

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 845-871, 2024, DOI:10.32604/cmc.2023.046607 - 30 January 2024

    Abstract In the fast-evolving landscape of digital networks, the incidence of network intrusions has escalated alarmingly. Simultaneously, the crucial role of time series data in intrusion detection remains largely underappreciated, with most systems failing to capture the time-bound nuances of network traffic. This leads to compromised detection accuracy and overlooked temporal patterns. Addressing this gap, we introduce a novel SSAE-TCN-BiLSTM (STL) model that integrates time series analysis, significantly enhancing detection capabilities. Our approach reduces feature dimensionality with a Stacked Sparse Autoencoder (SSAE) and extracts temporally relevant features through a Temporal Convolutional Network (TCN) and Bidirectional Long… More >

  • Open Access

    ARTICLE

    A Deep Learning Based Sentiment Analytic Model for the Prediction of Traffic Accidents

    Nadeem Malik1,*, Saud Altaf1, Muhammad Usman Tariq2, Ashir Ahmed3, Muhammad Babar4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1599-1615, 2023, DOI:10.32604/cmc.2023.040455 - 29 November 2023

    Abstract The severity of traffic accidents is a serious global concern, particularly in developing nations. Knowing the main causes and contributing circumstances may reduce the severity of traffic accidents. There exist many machine learning models and decision support systems to predict road accidents by using datasets from different social media forums such as Twitter, blogs and Facebook. Although such approaches are popular, there exists an issue of data management and low prediction accuracy. This article presented a deep learning-based sentiment analytic model known as Extra-large Network Bi-directional long short term memory (XLNet-Bi-LSTM) to predict traffic collisions More >

  • Open Access

    ARTICLE

    Text Extraction with Optimal Bi-LSTM

    Bahera H. Nayef1,*, Siti Norul Huda Sheikh Abdullah2, Rossilawati Sulaiman2, Ashwaq Mukred Saeed3

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3549-3567, 2023, DOI:10.32604/cmc.2023.039528 - 08 October 2023

    Abstract Text extraction from images using the traditional techniques of image collecting, and pattern recognition using machine learning consume time due to the amount of extracted features from the images. Deep Neural Networks introduce effective solutions to extract text features from images using a few techniques and the ability to train large datasets of images with significant results. This study proposes using Dual Maxpooling and concatenating convolution Neural Networks (CNN) layers with the activation functions Relu and the Optimized Leaky Relu (OLRelu). The proposed method works by dividing the word image into slices that contain characters.… More >

  • Open Access

    ARTICLE

    Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed

    Neelam Mughees1,2, Mujtaba Hussain Jaffery1, Abdullah Mughees3, Anam Mughees4, Krzysztof Ejsmont5,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6375-6393, 2023, DOI:10.32604/cmc.2023.038564 - 29 April 2023

    Abstract Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050. However, they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions. In microgrids, smart energy management systems, such as integrated demand response programs, are permanently established on a step-ahead basis, which means that accurate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids. With this in mind, a novel “bidirectional long short-term memory network” (Bi-LSTM)-based, deep stacked,… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for PM2.5 Concentration Prediction in Smart Environmental Monitoring

    Minh Thanh Vo1, Anh H. Vo2, Huong Bui3, Tuong Le4,5,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3029-3041, 2023, DOI:10.32604/iasc.2023.034636 - 15 March 2023

    Abstract Nowadays, air pollution is a big environmental problem in developing countries. In this problem, particulate matter 2.5 (PM2.5) in the air is an air pollutant. When its concentration in the air is high in developing countries like Vietnam, it will harm everyone’s health. Accurate prediction of PM2.5 concentrations can help to make the correct decision in protecting the health of the citizen. This study develops a hybrid deep learning approach named PM25-CBL model for PM2.5 concentration prediction in Ho Chi Minh City, Vietnam. Firstly, this study analyzes the effects of variables on PM2.5 concentrations in… More >

Displaying 1-10 on page 1 of 24. Per Page