Hussain Dawood1, Marriam Nawaz2, Tahira Nazir3, Ali Javed2, Abdul Khader Jilani Saudagar4,*, Hatoon S. AlSagri4
CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 429-459, 2025, DOI:10.32604/cmes.2025.066415
- 31 July 2025
Abstract Reliable human action recognition (HAR) in video sequences is critical for a wide range of applications, such as security surveillance, healthcare monitoring, and human-computer interaction. Several automated systems have been designed for this purpose; however, existing methods often struggle to effectively integrate spatial and temporal information from input samples such as 2-stream networks or 3D convolutional neural networks (CNNs), which limits their accuracy in discriminating numerous human actions. Therefore, this study introduces a novel deep-learning framework called the ARNet, designed for robust HAR. ARNet consists of two main modules, namely, a refined InceptionResNet-V2-based CNN and… More >