Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (209)
  • Open Access

    ARTICLE

    A New BEM Modeling Algorithm for Size-Dependent Thermopiezoelectric Problems in Smart Nanostructures

    Mohamed Abdelsabour Fahmy1,2,*

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 931-944, 2021, DOI:10.32604/cmc.2021.018191 - 04 June 2021

    Abstract The main objective of this paper is to introduce a new theory called size-dependent thermopiezoelectricity for smart nanostructures. The proposed theory includes the combination of thermoelastic and piezoelectric influences which enable us to describe the deformation and mechanical behaviors of smart nanostructures subjected to thermal, and piezoelectric loadings. Because of difficulty of experimental research problems associated with the proposed theory. Therefore, we propose a new boundary element method (BEM) formulation and algorithm for the solution of such problems, which involve temperatures, normal heat fluxes, displacements, couple-tractions, rotations, force-tractions, electric displacement, and normal electric displacement as… More >

  • Open Access

    ARTICLE

    A Combined Shape and Topology Optimization Based on Isogeometric Boundary Element Method for 3D Acoustics

    Jie Wang, Fuhang Jiang, Wenchang Zhao, Haibo Chen*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 645-681, 2021, DOI:10.32604/cmes.2021.015894 - 19 April 2021

    Abstract A combined shape and topology optimization algorithm based on isogeometric boundary element method for 3D acoustics is developed in this study. The key treatment involves using adjoint variable method in shape sensitivity analysis with respect to non-uniform rational basis splines control points, and in topology sensitivity analysis with respect to the artificial densities of sound absorption material. OpenMP tool in Fortran code is adopted to improve the efficiency of analysis. To consider the features and efficiencies of the two types of optimization methods, this study adopts a combined iteration scheme for the optimization process to More >

  • Open Access

    ABSTRACT

    Coupling VEM and BEM for computational homogenization of composite materials

    Marco Lo Cascio1, Marco Grifò1, Alberto Milazzo1, Ivano Benedetti1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 13-13, 2021, DOI:10.32604/icces.2021.08335

    Abstract The Virtual Element Method (VEM) [1] is a recent numerical technique that is capable of dealing with very general polygonal and polyhedral mesh elements, including irregular or non-convex ones. Because of this feature, the VEM ensures noticeable simplification in the data preparation stage of the analysis, especially for problems whose analysis domain features complex geometries, as in the case of computational micromechanics problems [2]. The Boundary Element Method (BEM) [3] is a well-known, extensively used and efficient numerical technique that has been successfully employed for the computational homogenization of materials with complex morphologies [4]. Due… More >

  • Open Access

    ABSTRACT

    A 3D multi-physics boundary element computational framework for polycrystalline materials micro-mechanics

    Ivano Benedetti1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 4-6, 2021, DOI:10.32604/icces.2021.08213

    Abstract A recently developed novel three-dimensional (3D) computational framework for the analysis of polycrystalline materials at the grain scale is described in this lecture. The framework is based on the employment of: i) 3D Laguerre-Voronoi tessellations for the representation of the micro-morphology of polycrystalline materials; ii) boundary integral equations for the representation of the mechanics of the individual grains; iii) suitable cohesive traction-separation laws for the representation of the multi-physics behavior of the interfaces (either inter-granular or trans-granular) within the aggregate, which are the seat of damage initiation and evolution processes, up to complete decohesion and failure. The lecture will describe More >

  • Open Access

    ARTICLE

    A New BEM for Fractional Nonlinear Generalized Porothermoelastic Wave Propagation Problems

    Mohamed Abdelsabour Fahmy1,2,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 59-76, 2021, DOI:10.32604/cmc.2021.015115 - 22 March 2021

    Abstract The main purpose of the current article is to develop a novel boundary element model for solving fractional-order nonlinear generalized porothermoelastic wave propagation problems in the context of temperature-dependent functionally graded anisotropic (FGA) structures. The system of governing equations of the considered problem is extremely very difficult or impossible to solve analytically due to nonlinearity, fractional order diffusion and strongly anisotropic mechanical and physical properties of considered porous structures. Therefore, an efficient boundary element method (BEM) has been proposed to overcome this difficulty, where, the nonlinear terms were treated using the Kirchhoff transformation and the More >

  • Open Access

    ARTICLE

    Development of TD-BEM Formulation for Dynamic Analysis for Twin-Parallel Circular Tunnels in an Elastic Semi-Innite Medium

    Weidong Lei1, Hai Zhou1,*, Hongjun Li2, Rui Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 577-597, 2021, DOI:10.32604/cmes.2021.011857 - 21 January 2021

    Abstract In order to simulate the propagation process of subway vibration of parallel tunnels in semi-infinite rocks or soils, time domain boundary element method (TD-BEM) formulation for analyzing the dynamic response of twin-parallel circular tunnels in an elastic semi-infinite medium is developed in this paper. The time domain boundary integral equations of displacement and stress for the elastodynamic problem are presented based on Betti’s reciprocal work theorem, ignoring contributions from initial conditions and body forces. In the process of establishing time domain boundary integral equations, some virtual boundaries are constructed between finite boundaries and the free… More >

  • Open Access

    ARTICLE

    Isogeometric Boundary Element Analysis for 2D Transient Heat Conduction Problem with Radial Integration Method

    Leilei Chen1, Kunpeng Li1, Xuan Peng2, Haojie Lian3,4,*, Xiao Lin5, Zhuojia Fu6

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 125-146, 2021, DOI:10.32604/cmes.2021.012821 - 22 December 2020

    Abstract This paper presents an isogeometric boundary element method (IGABEM) for transient heat conduction analysis. The Non-Uniform Rational B-spline (NURBS) basis functions, which are used to construct the geometry of the structures, are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations. B´ezier extraction technique is employed to accelerate the evaluation of NURBS basis functions. We adopt a radial integration method to address the additional domain integrals. The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis. More >

  • Open Access

    ARTICLE

    A Novel BEM for Modeling and Simulation of 3T Nonlinear Generalized Anisotropic Micropolar-Thermoelasticity Theory with Memory Dependent Derivative

    Mohamed Abdelsabour Fahmy1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 175-199, 2021, DOI:10.32604/cmes.2021.012218 - 22 December 2020

    Abstract The main aim of this paper is to propose a new memory dependent derivative (MDD) theory which called threetemperature nonlinear generalized anisotropic micropolar-thermoelasticity. The system of governing equations of the problems associated with the proposed theory is extremely difficult or impossible to solve analytically due to nonlinearity, MDD diffusion, multi-variable nature, multi-stage processing and anisotropic properties of the considered material. Therefore, we propose a novel boundary element method (BEM) formulation for modeling and simulation of such system. The computational performance of the proposed technique has been investigated. The numerical results illustrate the effects of time More >

  • Open Access

    ARTICLE

    Interpolating Isogeometric Boundary Node Method and Isogeometric Boundary Element Method Based on Parameter Space

    Hongyin Yang1,2, Jiwei Zhong1,*, Ying Wang3, Xingquan Chen2, Xiaoya Bian2

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 807-824, 2020, DOI:10.32604/cmes.2020.010936 - 21 August 2020

    Abstract In this paper, general interpolating isogeometric boundary node method (IIBNM) and isogeometric boundary element method (IBEM) based on parameter space are proposed for 2D elasticity problems. In both methods, the integral cells and elements are defined in parameter space, which can reproduce the geometry exactly at all the stages. In IIBNM, the improved interpolating moving leastsquare method (IIMLS) is applied for field approximation and the shape functions have the delta function property. The Lagrangian basis functions are used for field approximation in IBEM. Thus, the boundary conditions can be imposed directly in both methods. The More >

  • Open Access

    ARTICLE

    Resolving Domain Integral Issues in Isogeometric Boundary Element Methods via Radial Integration: A Study of Thermoelastic Analysis

    Shige Wang1, Zhongwang Wang1, Leilei Chen1, Haojie Lian2,3,*, Xuan Peng4, Haibo Chen5

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 585-604, 2020, DOI:10.32604/cmes.2020.09904 - 20 July 2020

    Abstract The paper applied the isogeometric boundary element method (IGABEM) to thermoelastic problems. The Non-Uniform Rational B-splines (NURBS) used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation. Due to the existence of thermal stress, the domain integral term appears in the boundary integral equation. We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral. In this way, IGABEM can maintain its advantages in dimensionality reduction and more importantly, seamless integration of CAD and numerical analysis based on boundary More >

Displaying 21-30 on page 3 of 209. Per Page