Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (162)
  • Open Access

    REVIEW

    Targeting brain tumors with innovative nanocarriers: bridging the gap through the blood-brain barrier

    KARAN WADHWA1, PAYAL CHAUHAN1, SHOBHIT KUMAR2, RAKESH PAHWA3,*, RAVINDER VERMA4, RAJAT GOYAL5, GOVIND SINGH1, ARCHANA SHARMA6, NEHA RAO3, DEEPAK KAUSHIK1,*

    Oncology Research, Vol.32, No.5, pp. 877-897, 2024, DOI:10.32604/or.2024.047278

    Abstract Background: Glioblastoma multiforme (GBM) is recognized as the most lethal and most highly invasive tumor. The high likelihood of treatment failure arises from the presence of the blood-brain barrier (BBB) and stem cells around GBM, which avert the entry of chemotherapeutic drugs into the tumor mass. Objective: Recently, several researchers have designed novel nanocarrier systems like liposomes, dendrimers, metallic nanoparticles, nanodiamonds, and nanorobot approaches, allowing drugs to infiltrate the BBB more efficiently, opening up innovative avenues to prevail over therapy problems and radiation therapy. Methods: Relevant literature for this manuscript has been collected from a comprehensive and systematic search of… More > Graphic Abstract

    Targeting brain tumors with innovative nanocarriers: bridging the gap through the blood-brain barrier

  • Open Access

    REVIEW

    A Review of Computing with Spiking Neural Networks

    Jiadong Wu, Yinan Wang*, Zhiwei Li*, Lun Lu, Qingjiang Li

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2909-2939, 2024, DOI:10.32604/cmc.2024.047240

    Abstract Artificial neural networks (ANNs) have led to landmark changes in many fields, but they still differ significantly from the mechanisms of real biological neural networks and face problems such as high computing costs, excessive computing power, and so on. Spiking neural networks (SNNs) provide a new approach combined with brain-like science to improve the computational energy efficiency, computational architecture, and biological credibility of current deep learning applications. In the early stage of development, its poor performance hindered the application of SNNs in real-world scenarios. In recent years, SNNs have made great progress in computational performance and practicability compared with the… More >

  • Open Access

    ARTICLE

    Extended Deep Learning Algorithm for Improved Brain Tumor Diagnosis System

    M. Adimoolam1, K. Maithili2, N. M. Balamurugan3, R. Rajkumar4, S. Leelavathy5, Raju Kannadasan6, Mohd Anul Haq7,*, Ilyas Khan8, ElSayed M. Tag El Din9, Arfat Ahmad Khan10

    Intelligent Automation & Soft Computing, Vol.39, No.1, pp. 33-55, 2024, DOI:10.32604/iasc.2024.039009

    Abstract At present, the prediction of brain tumors is performed using Machine Learning (ML) and Deep Learning (DL) algorithms. Although various ML and DL algorithms are adapted to predict brain tumors to some range, some concerns still need enhancement, particularly accuracy, sensitivity, false positive and false negative, to improve the brain tumor prediction system symmetrically. Therefore, this work proposed an Extended Deep Learning Algorithm (EDLA) to measure performance parameters such as accuracy, sensitivity, and false positive and false negative rates. In addition, these iterated measures were analyzed by comparing the EDLA method with the Convolutional Neural Network (CNN) way further using… More >

  • Open Access

    ARTICLE

    Kaempferol ameliorated levodopa-induced dyskinesia in experimental rats: A role of brain monoamines, cFOS, FosB, Parkin, Pdyn, TH, and p-JNK

    PEI QIN#, MIAO LIU#, XIN WANG, JIANHUA MA*

    BIOCELL, Vol.48, No.3, pp. 513-523, 2024, DOI:10.32604/biocell.2023.045640

    Abstract Background: L-dopa (Levodopa) is well known for managing PD (Parkinson’s disease); however, its prolonged use caused dyskinesia (LID). Due to the varied presentation of LID, effective treatment options are scarce. Flavonoids reported their neuroprotective activity by ameliorating acetylcholinesterase, monoamine oxidase, and neuroinflammation. Kaempferol is another flavonoid bearing these potentials. Aim: To evaluate neuroprotective activity of kaempferol in dyskinetic rats. Methods: PD was developed in Sprague-Dawley rats by injecting combination of L-ascorbic acid (10 µL) + 6-OHDA (12 µg) in medial forebrain bundle to induce neuronal damage in substantial nigra (SNr). LID was induced by administrating combination of L-dopa (20 mg/kg)… More > Graphic Abstract

    Kaempferol ameliorated levodopa-induced dyskinesia in experimental rats: A role of brain monoamines, cFOS, FosB, Parkin, Pdyn, TH, and p-JNK

  • Open Access

    ARTICLE

    Placenta-derived mesenchymal stem cells attenuate secondary brain injury after controlled cortical impact in rats by inhibiting matrix metalloproteinases

    PING YANG1,2,3, YUANXIANG LAN1,2, ZHONG ZENG1,2, YAN WANG1,2, HECHUN XIA1,2,*

    BIOCELL, Vol.48, No.1, pp. 149-162, 2024, DOI:10.32604/biocell.2023.042367

    Abstract Background: As a form of biological therapy, placenta-derived mesenchymal stem cells (PDMSCs) exhibit considerable promise in addressing the complex pathological processes of traumaticbrain injury (TBI) due to their multi-target and multi-pathway mode of action. Material & Methods: This study investigates the protective mechanisms and benefits of PDMSCs in mitigating the effects of controlled cortical impact (CCI) in rats and glutamate-induced oxidative stress injury in HT22 cells in vitro. Our primary objective is to provide evidence supporting the clinical application of PDMSCs. Results: In the in vivo arm of our investigation, we observed a swift elevation of matrix metalloproteinase-9 (MMP-9) in… More > Graphic Abstract

    Placenta-derived mesenchymal stem cells attenuate secondary brain injury after controlled cortical impact in rats by inhibiting matrix metalloproteinases

  • Open Access

    ARTICLE

    Multi-Level Parallel Network for Brain Tumor Segmentation

    Juhong Tie, Hui Peng*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 741-757, 2024, DOI:10.32604/cmes.2023.043353

    Abstract Accurate automatic segmentation of gliomas in various sub-regions, including peritumoral edema, necrotic core, and enhancing and non-enhancing tumor core from 3D multimodal MRI images, is challenging because of its highly heterogeneous appearance and shape. Deep convolution neural networks (CNNs) have recently improved glioma segmentation performance. However, extensive down-sampling such as pooling or stridden convolution in CNNs significantly decreases the initial image resolution, resulting in the loss of accurate spatial and object parts information, especially information on the small sub-region tumors, affecting segmentation performance. Hence, this paper proposes a novel multi-level parallel network comprising three different level parallel sub-networks to fully… More >

  • Open Access

    ARTICLE

    Advancing Brain Tumor Analysis through Dynamic Hierarchical Attention for Improved Segmentation and Survival Prognosis

    S. Kannan1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3835-3851, 2023, DOI:10.32604/cmc.2023.042465

    Abstract Gliomas, the most prevalent primary brain tumors, require accurate segmentation for diagnosis and risk assessment. In this paper, we develop a novel deep learning-based method, the Dynamic Hierarchical Attention for Improved Segmentation and Survival Prognosis (DHA-ISSP) model. The DHA-ISSP model combines a three-band 3D convolutional neural network (CNN) U-Net architecture with dynamic hierarchical attention mechanisms, enabling precise tumor segmentation and survival prediction. The DHA-ISSP model captures fine-grained details and contextual information by leveraging attention mechanisms at multiple levels, enhancing segmentation accuracy. By achieving remarkable results, our approach surpasses 369 competing teams in the 2020 Multimodal Brain Tumor Segmentation Challenge. With… More >

  • Open Access

    REVIEW

    Reservoir of human immunodeficiency virus in the brain: New insights into the role of T cells

    YINGDONG ZHANG1,2, MING CHU1,2,*, HONGZHOU LU3,*

    BIOCELL, Vol.47, No.12, pp. 2591-2595, 2023, DOI:10.32604/biocell.2023.030331

    Abstract Human immunodeficiency virus (HIV) infection of the central nervous system (CNS) has attracted significant attention because it contributes to severe complications of acquired immunodeficiency syndrome (AIDS) and seriously impairs the life quality of infected patients. In this review, we briefly describe the latent infection of HIV in CNS and focus on the role of the important immune cells, such as T cells, in the formation and maintenance of the HIV reservoir in CNS. This review explores the mechanisms by which T cells enter CNS and establish latent infection of HIV in the CNS. In conclusion, we summarize the role of… More > Graphic Abstract

    Reservoir of human immunodeficiency virus in the brain: New insights into the role of T cells

  • Open Access

    ARTICLE

    Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space

    Mudassir Khalil1, Muhammad Imran Sharif2,*, Ahmed Naeem3, Muhammad Umar Chaudhry1, Hafiz Tayyab Rauf4,*, Adham E. Ragab5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2031-2047, 2023, DOI:10.32604/cmc.2023.043687

    Abstract Early detection of brain tumors is critical for effective treatment planning. Identifying tumors in their nascent stages can significantly enhance the chances of patient survival. While there are various types of brain tumors, each with unique characteristics and treatment protocols, tumors are often minuscule during their initial stages, making manual diagnosis challenging, time-consuming, and potentially ambiguous. Current techniques predominantly used in hospitals involve manual detection via MRI scans, which can be costly, error-prone, and time-intensive. An automated system for detecting brain tumors could be pivotal in identifying the disease in its earliest phases. This research applies several data augmentation techniques… More >

  • Open Access

    ARTICLE

    EMU-Net: Automatic Brain Tumor Segmentation and Classification Using Efficient Modified U-Net

    Mohammed Aly1,*, Abdullah Shawan Alotaibi2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 557-582, 2023, DOI:10.32604/cmc.2023.042493

    Abstract Tumor segmentation is a valuable tool for gaining insights into tumors and improving treatment outcomes. Manual segmentation is crucial but time-consuming. Deep learning methods have emerged as key players in automating brain tumor segmentation. In this paper, we propose an efficient modified U-Net architecture, called EMU-Net, which is applied to the BraTS 2020 dataset. Our approach is organized into two distinct phases: classification and segmentation. In this study, our proposed approach encompasses the utilization of the gray-level co-occurrence matrix (GLCM) as the feature extraction algorithm, convolutional neural networks (CNNs) as the classification algorithm, and the chi-square method for feature selection.… More >

Displaying 1-10 on page 1 of 162. Per Page