Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    REVIEW

    Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends

    Ameer Hamza, Robertas Damaševičius*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-41, 2026, DOI:10.32604/cmc.2025.069721 - 10 November 2025

    Abstract This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities, focusing on recent trends from 2022 to 2025. The primary objective is to evaluate methodological advancements, model performance, dataset usage, and existing challenges in developing clinically robust AI systems. We included peer-reviewed journal articles and high-impact conference papers published between 2022 and 2025, written in English, that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification. Excluded were non-open-access publications, books, and non-English articles. A structured search was… More >

  • Open Access

    ARTICLE

    Automated Brain Tumor Classification from Magnetic Resonance Images Using Fine-Tuned EfficientNet-B6 with Bayesian Optimization Approach

    Sarfaraz Abdul Sattar Natha1,*, Mohammad Siraj2,*, Majid Altamimi2, Adamali Shah2, Maqsood Mahmud3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4179-4201, 2025, DOI:10.32604/cmes.2025.072529 - 23 December 2025

    Abstract A brain tumor is a disease in which abnormal cells form a tumor in the brain. They are rare and can take many forms, making them difficult to treat, and the survival rate of affected patients is low. Magnetic resonance imaging (MRI) is a crucial tool for diagnosing and localizing brain tumors. However, the manual interpretation of MRI images is tedious and prone to error. As artificial intelligence advances rapidly, DL techniques are increasingly used in medical imaging to accurately detect and diagnose brain tumors. In this study, we introduce a deep convolutional neural network… More >

  • Open Access

    ARTICLE

    Channel-Attention DenseNet with Dilated Convolutions for MRI Brain Tumor Classification

    Abdu Salam1, Mohammad Abrar2, Raja Waseem Anwer3, Farhan Amin4,*, Faizan Ullah5, Isabel de la Torre6,*, Gerardo Mendez Mezquita7, Henry Fabian Gongora7

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2457-2479, 2025, DOI:10.32604/cmes.2025.072765 - 26 November 2025

    Abstract Brain tumors pose significant diagnostic challenges due to their diverse types and complex anatomical locations. Due to the increase in precision image-based diagnostic tools, driven by advancements in artificial intelligence (AI) and deep learning, there has been potential to improve diagnostic accuracy, especially with Magnetic Resonance Imaging (MRI). However, traditional state-of-the-art models lack the sensitivity essential for reliable tumor identification and segmentation. Thus, our research aims to enhance brain tumor diagnosis in MRI by proposing an advanced model. The proposed model incorporates dilated convolutions to optimize the brain tumor segmentation and classification. The proposed model… More >

  • Open Access

    ARTICLE

    Enhanced Classification of Brain Tumor Types Using Multi-Head Self-Attention and ResNeXt CNN

    Muhammad Naeem*, Abdul Majid

    Journal on Artificial Intelligence, Vol.7, pp. 115-141, 2025, DOI:10.32604/jai.2025.062446 - 30 May 2025

    Abstract Brain tumor identification is a challenging task in neuro-oncology. The brain’s complex anatomy makes it a crucial part of the central nervous system. Accurate tumor classification is crucial for clinical diagnosis and treatment planning. This research presents a significant advancement in the multi-classification of brain tumors. This paper proposed a novel architecture that integrates Enhanced ResNeXt 101_32×8d, a Convolutional Neural Network (CNN) with a multi-head self-attention (MHSA) mechanism. This combination harnesses the strengths of the feature extraction, feature representation by CNN, and long-range dependencies by MHSA. Magnetic Resonance Imaging (MRI) datasets were employed to check… More >

  • Open Access

    ARTICLE

    ParMamba: A Parallel Architecture Using CNN and Mamba for Brain Tumor Classification

    Gaoshuai Su1,2, Hongyang Li1,*, Huafeng Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2527-2545, 2025, DOI:10.32604/cmes.2025.059452 - 03 March 2025

    Abstract Brain tumors, one of the most lethal diseases with low survival rates, require early detection and accurate diagnosis to enable effective treatment planning. While deep learning architectures, particularly Convolutional Neural Networks (CNNs), have shown significant performance improvements over traditional methods, they struggle to capture the subtle pathological variations between different brain tumor types. Recent attention-based models have attempted to address this by focusing on global features, but they come with high computational costs. To address these challenges, this paper introduces a novel parallel architecture, ParMamba, which uniquely integrates Convolutional Attention Patch Embedding (CAPE) and the… More >

  • Open Access

    ARTICLE

    Advancing Brain Tumor Classification: Evaluating the Efficacy of Machine Learning Models Using Magnetic Resonance Imaging

    Khalid Jamil1, Wahab Khan1, Bilal Khan2, Sarwar Shah Khan2,*

    Digital Engineering and Digital Twin, Vol.3, pp. 1-16, 2025, DOI:10.32604/dedt.2025.058943 - 28 February 2025

    Abstract Brain tumors are one of the deadliest cancers, partly because they’re often difficult to detect early or with precision. Standard Magnetic Resonance Imaging (MRI) imaging, though essential, has limitations, it can miss subtle or early-stage tumors, which delays diagnosis and affects patient outcomes. This study aims to tackle these challenges by exploring how machine learning (ML) can improve the accuracy of brain tumor identification from MRI scans. Motivated by the potential for artificial intillegence (AI) to boost diagnostic accuracy where traditional methods fall short, we tested several ML models, with a focus on the K-Nearest More >

  • Open Access

    ARTICLE

    Transformation of MRI Images to Three-Level Color Spaces for Brain Tumor Classification Using Deep-Net

    Fadl Dahan*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 381-395, 2024, DOI:10.32604/iasc.2024.047921 - 21 May 2024

    Abstract In the domain of medical imaging, the accurate detection and classification of brain tumors is very important. This study introduces an advanced method for identifying camouflaged brain tumors within images. Our proposed model consists of three steps: Feature extraction, feature fusion, and then classification. The core of this model revolves around a feature extraction framework that combines color-transformed images with deep learning techniques, using the ResNet50 Convolutional Neural Network (CNN) architecture. So the focus is to extract robust feature from MRI images, particularly emphasizing weighted average features extracted from the first convolutional layer renowned for… More >

  • Open Access

    ARTICLE

    Effectiveness of Deep Learning Models for Brain Tumor Classification and Segmentation

    Muhammad Irfan1, Ahmad Shaf2,*, Tariq Ali2, Umar Farooq2, Saifur Rahman1, Salim Nasar Faraj Mursal1, Mohammed Jalalah1, Samar M. Alqhtani3, Omar AlShorman4

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 711-729, 2023, DOI:10.32604/cmc.2023.038176 - 08 June 2023

    Abstract A brain tumor is a mass or growth of abnormal cells in the brain. In children and adults, brain tumor is considered one of the leading causes of death. There are several types of brain tumors, including benign (non-cancerous) and malignant (cancerous) tumors. Diagnosing brain tumors as early as possible is essential, as this can improve the chances of successful treatment and survival. Considering this problem, we bring forth a hybrid intelligent deep learning technique that uses several pre-trained models (Resnet50, Vgg16, Vgg19, U-Net) and their integration for computer-aided detection and localization systems in brain… More >

  • Open Access

    ARTICLE

    CNN-LSTM: A Novel Hybrid Deep Neural Network Model for Brain Tumor Classification

    R. D. Dhaniya1, K. M. Umamaheswari2,*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1129-1143, 2023, DOI:10.32604/iasc.2023.035905 - 29 April 2023

    Abstract Current revelations in medical imaging have seen a slew of computer-aided diagnostic (CAD) tools for radiologists developed. Brain tumor classification is essential for radiologists to fully support and better interpret magnetic resonance imaging (MRI). In this work, we reported on new observations based on binary brain tumor categorization using HYBRID CNN-LSTM. Initially, the collected image is pre-processed and augmented using the following steps such as rotation, cropping, zooming, CLAHE (Contrast Limited Adaptive Histogram Equalization), and Random Rotation with panoramic stitching (RRPS). Then, a method called particle swarm optimization (PSO) is used to segment tumor regions More >

  • Open Access

    ARTICLE

    Real-Time Multi-Feature Approximation Model-Based Efficient Brain Tumor Classification Using Deep Learning Convolution Neural Network Model

    Amarendra Reddy Panyala1,2, M. Baskar3,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3883-3899, 2023, DOI:10.32604/csse.2023.037050 - 03 April 2023

    Abstract The deep learning models are identified as having a significant impact on various problems. The same can be adapted to the problem of brain tumor classification. However, several deep learning models are presented earlier, but they need better classification accuracy. An efficient Multi-Feature Approximation Based Convolution Neural Network (CNN) model (MFA-CNN) is proposed to handle this issue. The method reads the input 3D Magnetic Resonance Imaging (MRI) images and applies Gabor filters at multiple levels. The noise-removed image has been equalized for its quality by using histogram equalization. Further, the features like white mass, grey… More >

Displaying 1-10 on page 1 of 24. Per Page