Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (292)
  • Open Access

    ARTICLE

    Experimental Characterization of MCF-10A Normal Cells Using AFM: Comparison with MCF-7 Cancer Cells

    Moharam Habibnejad Korayem1,*, Zahra Rastegar2

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 109-122, 2019, DOI:10.32604/mcb.2019.04706

    Abstract The mechanical properties of single cells have been recently identified as the basis of an emerging approach in medical applications since they are closely related to the biological processes of cells and human health conditions. The problem in hand is how to measure mechanical properties in order to obtain them more accurately and applicably. Some of the cell’s properties such as elasticity module and adhesion have been measured before using various methods; nevertheless, comprehensive tests for two healthy and cancerous cells have not been performed simultaneously. As a Nanoscale device, AFM has been used for… More >

  • Open Access

    ARTICLE

    CFD INVESTIGATIONS OF THERMAL AND DYNAMIC BEHAVIORS IN A TUBULAR HEAT EXCHANGER WITH BUTTERFLY BAFFLES

    AlemKarimaa,*, Sahel Djamelb , Nemdili Alic, Ameur Houarid

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-7, 2018, DOI:10.5098/hmt.10.27

    Abstract In the present paper, the effects of a new baffle design on the efficiency of a tubular heat exchanger are numerically investigated. It concerns butterfly baffles inserted in a cylindrical tube heat exchanger. We focus on the influence of the shape of baffles, the space between baffles (pitch ratio, PR) and the baffle size (i.e. the blockage ratio, BR) on the heat transfer and flow characteristics. Three geometrical configurations with different PRs are realized (PR = 1, 2 and 4) and five others with different blockage ratios (BR = 0.1, 0.2, 0.3, 0.4 and 0.5). More >

  • Open Access

    ARTICLE

    The Hemodynamic Comparative Study Between Pulsatile and Non-Pulsatile VA ECMO: A Primary Numerical Study

    Qi Zhang1, Bin Gao1, Yue Shi1, Chang Yu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 247-262, 2018, DOI:10.31614/cmes.2018.04082

    Abstract Although pulsatile ECMO, as novel kinds of ECMO, has been attracted more and more attention, the differences of the hemodynamic effects of the pulsatile ECMO on the aorta, the cerebral perfusion, and left ventricular work were still under-investigated. The aim of this study was to clarify the hemodynamic differences of the cardiovascular system between the pulsatile and non-pulsatile VA ECMO. In this study, three ECMO support modes, named as “constant flow mode”, “co-pulse mode” and “counter pulse mode”, were designed. The computational fluid dynamics (CFD) study was carried out. The distribution of the oxygenated blood,… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Convective Heat Transfer and Friction in Solar Air Heater with Thin Ribs

    Sanjay K. Sharma1, V. R. Kalamkar1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.3, pp. 295-319, 2018, DOI:10.3970/cmes.2018.114.295

    Abstract The three-dimensional numerical investigation of an incompressible flow through rib roughened solar air heater is carried out. A combination of thin transverse and truncated ribs is attached on the absorber plate to study its effect on the heat transfer and friction factor. The parameters in the form of Reynolds number (Re) of 4000-16000, relative roughness pitch (P/e) of 8-18 and relative roughness height (e/Dh) of 0.0366-0.055 is considered for the analysis. The CFD code ANSYS FLUENT is used to solve the governing equations of turbulent flow. The RNG k–ε turbulence model is used to solve More >

  • Open Access

    ARTICLE

    Computational Fluid Dynamics Analysis of Shroud Design on Hemodynamic Performance and Blood Damage in a Centrifugal Blood Pump

    Guangliang Pan1, Yu Chang1,*, Mingrui Fu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 199-213, 2018, DOI:10.31614/cmes.2018.04080

    Abstract Patients with extracorporeal membrane oxygenation still suffer from high rates of complication that linked to the flow field within the blood pump. So it is essential to optimise the geometry of the pump. The specification of shroud design is arguably the necessary design parameter in the centrifugal pump. However, the hemodynamic performances of the different shroud designs have not been studied extensively. In this study, ten different shroud designs were made and divided into two groups as the different covering locations (A: Covering the blade leading edge, B: Covering the blade trailing edge). In every… More >

  • Open Access

    ARTICLE

    Effect of Geometrical Parameters on Vortex Fluidic Oscillators Operating with Gases and Liquids

    T. Chekifi1,2,*, B. Dennai2, R. Khelfaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.3, pp. 201-212, 2018, DOI:10.3970/fdmp.2018.00322

    Abstract The fluidic oscillator is an interesting device developed for passive flow measurement. These microsystems can produce a high oscillating jet frequency with high flow velocity. The main advantages of fluidic oscillators are that no moving parts is included in the device. Commercial CFD code FLUENT was used to perform analysis of flows in fluidic oscillator. Numerical simulations were carried out for different flow conditions, where water and air were used as working fluids. The oscillation frequencies were identified by the discrete fast Fourier transform method (FFT). Furthermore a low-pressure vortex of fluid flow in the More >

  • Open Access

    ARTICLE

    Turbulent Flow Produced by Twin Slot Jets Impinging a Wall

    Fatiha Bentarzi1, Amina Mataoui1, *

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.2, pp. 107-120, 2018, DOI:10.3970/fdmp.2018.06046

    Abstract The dynamics of two fully developed turbulent jets, perpendicular to a heated flat plate and related heat transfer mechanism are analysed numerically. This problem is relevant to several thermal engineering applications. The governing equations are solved by a finite volume method with a second order RSM model combined with wall functions used for turbulent modelling. The possibility to improve heat transfer is assessed taking into account the characteristic parameters for the jet-wall interaction. In particular, a parametric study is conducted by varying the jet Reynolds number (Re) and the nozzle to plate distance (D). The… More >

  • Open Access

    ARTICLE

    Numerical Visualizations of Mixing Enhancement in a 2D Supersonic Ejector

    M. Dandani1,*, V. Lepiller2, A. Ghezal3, P. Desevaux4

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.1, pp. 23-37, 2018, DOI:10.3970/fdmp.2018.014.023

    Abstract The present study deals with the numerical visualization of the mixing process in a 2D supersonic ejector. The mixing process is visualized using two CFD flow visualization methods. The first method consists in introducing discrete particles in the secondary flow and computing their trajectories. The second method consists in modeling the diffusion of a passive scalar introduced in one of the two flows. The mixing process is investigated in the case of a conventional 2D supersonic ejector and a second case of an ejector equipped with transverse micro jets. Flow visualizations obtained show the existence More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF A DOUBLE SKIN WITH SECONDARY VENTILATION FLOW ON ADIABATIC WALL

    M. Bouraouia, M. S. Rouabaha, A. Abidi-Saadb,c,d,*, A. Korichie, C. Popab , G. Polidorib

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-6, 2017, DOI:10.5098/hmt.8.18

    Abstract Study concerning a double skin flow with secondary ventilation was conducted numerically, in order to understand the basic mechanisms of the free convection in an open channel asymmetrically heated with uniform heat flux density (510 W/m2 ). The vertical channel corresponds to a double skin façade, which was immersed in a tank filled with water. The tank corresponds to the environment which allows us to overcome pressure conditions at the inlet and the outlet of the channel. The use of water allows neglecting radiation effect. The mass conservation equations of momentum and energy are solved using More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER AND ENTROPY GENERATION INSIDE 3D TRAPEZOIDAL SOLAR DISTILLER

    Walid Aicha,c, Lioua Kolsia,d,*, Abdelkarim Aydie,f, Abdullah A.A.A Al-Rashedb , Noureddine Ait Messaoudenea , Mohamed Naceur Borjinid

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.8

    Abstract Numerical study of double-diffusive natural convection flow and entropy generation in 3D trapezoidal solar distiller was performed using computational fluid dynamics (CFD). In this research the flow, provoked by the interaction of chemical species diffusions and the thermal energy, is assumed to be laminar. Using potential vector-vorticity formulation in its three-dimensional form, the governing equations are formulated and solved by the numerical methodology based on the finite volume method. The main objective is to analyze the effects of buoyancy ratio for opposed temperature and concentration gradients and to focus the attention on three-dimensional aspects and More >

Displaying 211-220 on page 22 of 292. Per Page