Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9,651)
  • Open Access

    ARTICLE

    YOLO-MFD: Remote Sensing Image Object Detection with Multi-Scale Fusion Dynamic Head

    Zhongyuan Zhang, Wenqiu Zhu*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2547-2563, 2024, DOI:10.32604/cmc.2024.048755

    Abstract Remote sensing imagery, due to its high altitude, presents inherent challenges characterized by multiple scales, limited target areas, and intricate backgrounds. These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery. Additionally, these complexities contribute to inaccuracies in target localization and hinder precise target categorization. This paper addresses these challenges by proposing a solution: The YOLO-MFD model (YOLO-MFD: Remote Sensing Image Object Detection with Multi-scale Fusion Dynamic Head). Before presenting our method, we delve into the prevalent issues faced in remote sensing imagery analysis. Specifically, we emphasize the… More >

  • Open Access

    ARTICLE

    A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting

    Farhan Ullah1, Xuexia Zhang1,*, Mansoor Khan2, Muhammad Abid3,*, Abdullah Mohamed4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3373-3395, 2024, DOI:10.32604/cmc.2024.048656

    Abstract Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows. Traditional approaches frequently struggle with complex data and non-linear connections. This article presents a novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts. The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-Era Retrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms using in-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model, while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporal neural network… More >

  • Open Access

    ARTICLE

    Improving the Segmentation of Arabic Handwriting Using Ligature Detection Technique

    Husam Ahmad Al Hamad*, Mohammad Shehab*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2015-2034, 2024, DOI:10.32604/cmc.2024.048527

    Abstract Recognizing handwritten characters remains a critical and formidable challenge within the realm of computer vision. Although considerable strides have been made in enhancing English handwritten character recognition through various techniques, deciphering Arabic handwritten characters is particularly intricate. This complexity arises from the diverse array of writing styles among individuals, coupled with the various shapes that a single character can take when positioned differently within document images, rendering the task more perplexing. In this study, a novel segmentation method for Arabic handwritten scripts is suggested. This work aims to locate the local minima of the vertical and diagonal word image densities… More >

  • Open Access

    ARTICLE

    A Study on the Explainability of Thyroid Cancer Prediction: SHAP Values and Association-Rule Based Feature Integration Framework

    Sujithra Sankar1,*, S. Sathyalakshmi2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3111-3138, 2024, DOI:10.32604/cmc.2024.048408

    Abstract In the era of advanced machine learning techniques, the development of accurate predictive models for complex medical conditions, such as thyroid cancer, has shown remarkable progress. Accurate predictive models for thyroid cancer enhance early detection, improve resource allocation, and reduce overtreatment. However, the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and transparency. This paper proposes a novel association-rule based feature-integrated machine learning model which shows better classification and prediction accuracy than present state-of-the-art models. Our study also focuses on the application of SHapley Additive exPlanations (SHAP) values as a powerful tool for explaining… More >

  • Open Access

    ARTICLE

    Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections

    Dmitry Gura1,2, Bo Dong3,*, Duaa Mehiar4, Nidal Al Said5

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1995-2014, 2024, DOI:10.32604/cmc.2024.048238

    Abstract The motivation for this study is that the quality of deep fakes is constantly improving, which leads to the need to develop new methods for their detection. The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection, which is then used as input to the CNN. The customized Convolutional Neural Network method is the date augmented-based CNN model to generate ‘fake data’ or ‘fake images’. This study was carried out using Python and its libraries. We used 242 films from the dataset gathered by the Deep Fake Detection Challenge, of which 199… More >

  • Open Access

    ARTICLE

    Enhancing Deep Learning Semantics: The Diffusion Sampling and Label-Driven Co-Attention Approach

    Chunhua Wang1,2, Wenqian Shang1,2,*, Tong Yi3,*, Haibin Zhu4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1939-1956, 2024, DOI:10.32604/cmc.2024.048135

    Abstract The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms, yielding outstanding achievements across diverse domains. Nonetheless, self-attention mechanisms falter when applied to datasets with intricate semantic content and extensive dependency structures. In response, this paper introduces a Diffusion Sampling and Label-Driven Co-attention Neural Network (DSLD), which adopts a diffusion sampling method to capture more comprehensive semantic information of the data. Additionally, the model leverages the joint correlation information of labels and data to introduce the computation of text representation, correcting semantic representation biases in the data, and increasing the accuracy of semantic… More >

  • Open Access

    ARTICLE

    An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism

    Zhijun Guo1, Yun Sun2,*, Ying Wang1, Chaoqi Fu3, Jilong Zhong4,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2375-2398, 2024, DOI:10.32604/cmc.2024.048112

    Abstract Due to the time-varying topology and possible disturbances in a conflict environment, it is still challenging to maintain the mission performance of flying Ad hoc networks (FANET), which limits the application of Unmanned Aerial Vehicle (UAV) swarms in harsh environments. This paper proposes an intelligent framework to quickly recover the cooperative coverage mission by aggregating the historical spatio-temporal network with the attention mechanism. The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model. A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction… More >

  • Open Access

    ARTICLE

    A Heuristic Radiomics Feature Selection Method Based on Frequency Iteration and Multi-Supervised Training Mode

    Zhigao Zeng1,2, Aoting Tang1,2, Shengqiu Yi1,2, Xinpan Yuan1,2, Yanhui Zhu1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2277-2293, 2024, DOI:10.32604/cmc.2024.047989

    Abstract Radiomics is a non-invasive method for extracting quantitative and higher-dimensional features from medical images for diagnosis. It has received great attention due to its huge application prospects in recent years. We can know that the number of features selected by the existing radiomics feature selection methods is basically about ten. In this paper, a heuristic feature selection method based on frequency iteration and multiple supervised training mode is proposed. Based on the combination between features, it decomposes all features layer by layer to select the optimal features for each layer, then fuses the optimal features to form a local optimal… More >

  • Open Access

    ARTICLE

    A Novel Approach to Breast Tumor Detection: Enhanced Speckle Reduction and Hybrid Classification in Ultrasound Imaging

    K. Umapathi1,*, S. Shobana1, Anand Nayyar2, Judith Justin3, R. Vanithamani3, Miguel Villagómez Galindo4, Mushtaq Ahmad Ansari5, Hitesh Panchal6,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1875-1901, 2024, DOI:10.32604/cmc.2024.047961

    Abstract Breast cancer detection heavily relies on medical imaging, particularly ultrasound, for early diagnosis and effective treatment. This research addresses the challenges associated with computer-aided diagnosis (CAD) of breast cancer from ultrasound images. The primary challenge is accurately distinguishing between malignant and benign tumors, complicated by factors such as speckle noise, variable image quality, and the need for precise segmentation and classification. The main objective of the research paper is to develop an advanced methodology for breast ultrasound image classification, focusing on speckle noise reduction, precise segmentation, feature extraction, and machine learning-based classification. A unique approach is introduced that combines Enhanced… More >

  • Open Access

    ARTICLE

    Nonlinear Registration of Brain Magnetic Resonance Images with Cross Constraints of Intensity and Structure

    Han Zhou1,2, Hongtao Xu1,2, Xinyue Chang1,2, Wei Zhang1,2, Heng Dong1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2295-2313, 2024, DOI:10.32604/cmc.2024.047754

    Abstract Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes. However, these methods often lack constraint information and overlook semantic consistency, limiting their performance. To address these issues, we present a novel approach for medical image registration called the Dual-VoxelMorph, featuring a dual-channel cross-constraint network. This innovative network utilizes both intensity and segmentation images, which share identical semantic information and feature representations. Two encoder-decoder structures calculate deformation fields for intensity and segmentation images, as generated by the dual-channel cross-constraint network. This design facilitates bidirectional communication between grayscale and segmentation information, enabling the… More >

Displaying 41-50 on page 5 of 9651. Per Page