Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Microwave–Induced Thermo-Responsive Shape Memory Polyurethane/MWCNTs Composites and Improved their Shape Memory and Mechanical Properties

    KRISHAN KUMAR PATEL, RAJESH PUROHIT

    Journal of Polymer Materials, Vol.36, No.1, pp. 23-37, 2019, DOI:10.32381/JPM.2019.36.01.3

    Abstract Microwave (MV)-induced thermo-responsive shape memory thermoplastic polyurethane (SMTPU)/ MWCNT composites were prepared in micro-compounder. Composites containing different amount of multiwall Carbon nanotube (MWCNT) varying from 0 to 1.5 phr in SMTPU matrix were prepared. Maximum stretching strength, recovery force and tensile strength for 1.5 CNTPU (1.5 phr MWCNT in SMTPU matrix) was increased by 120%, 100% and 24% respectively as compared to SMTPU. MV-induced shape memory is a novel approach for fast, clean and remote heating during operation. MWCNT is strong absorber of microwave irradiation so that SMTPU/ MWCNTs nanocomposites successfully triggered by microwave. More >

  • Open Access

    ARTICLE

    MHD (SWCNTS + MWCNTS)/H2O-Based Williamson Hybrid Nanouids Flow Past Exponential Shrinking Sheet in Porous Medium

    Hamzeh Taha Alkasasbeh1,*, Muhammad Khairul Anuar Mohamed2

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 265-279, 2023, DOI:10.32604/fhmt.2023.041539

    Abstract The present study numerically investigates the flow and heat transfer of porous Williamson hybrid nanofluid on an exponentially shrinking sheet with magnetohydrodynamic (MHD) effects. The nonlinear partial differential equations which governed the model are first reduced to a set of ordinary differential equations by using the similarity transformation. Next, the BVP4C solver is applied to solve the equations by considering the pertinent fluid parameters such as the permeability parameter, the magnetic parameter, the Williamson parameter, the nanoparticle volume fractions and the wall mass transfer parameter. The single (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) nanoparticles are taken as the hybrid nanoparticles.… More >

  • Open Access

    ARTICLE

    Computational Analysis of Heat and Mass Transfer in Magnetized Darcy-Forchheimer Hybrid Nanofluid Flow with Porous Medium and Slip Effects

    Nosheen Fatima1, Nabeela Kousar1, Khalil Ur Rehman2,3,*, Wasfi Shatanawi2,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2311-2330, 2023, DOI:10.32604/cmes.2023.026994

    Abstract A computational analysis of magnetized hybrid Darcy-Forchheimer nanofluid flow across a flat surface is presented in this work. For the study of heat and mass transfer aspects viscous dissipation, activation energy, Joule heating, thermal radiation, and heat generation effects are considered. The suspension of nanoparticles singlewalled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are created by hybrid nanofluids. However, single-walled carbon nanotubes (SWCNTs) produce nanofluids, with water acting as conventional fluid, respectively. Nonlinear partial differential equations (PDEs) that describe the ultimate flow are converted to nonlinear ordinary differential equations (ODEs) using appropriate similarity transformation. The ODEs are dealt with… More >

  • Open Access

    ARTICLE

    ANALYTICAL STUDY OF UNSTEADY SQUEEZED FLOW OF WATER BASE CNTS NANOFLUID WITH MAGNETIC FIELD AND VARIABLE THERMAL CONDUCTIVITY OVER A STRETCHING SURFACE

    Ali Rehmana , Zabidin Salleha,* , Taza Gulb

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-7, 2020, DOI:10.5098/hmt.14.20

    Abstract This research paper explains the analytical solution unsteady squeezing flow of water based CNTs for both MWCNT and SWCNT in the presence of magnetic field and variable thermal conductivity. The given partial differential equation is converted to nonlinear ordinary differential equation by using the similarity transformation and solve by analytical method namely optimal homotopy asymptotic method (OHAM) to obtain analytical solution of the nonlinear problem which analyze the problem. The result of important parameter for both velocity and temperature profiles are plotted and discussed. The BVPh 2.0 package is used to obtain the convergence of the problem up to 25… More >

  • Open Access

    ARTICLE

    INVESTIGATION ON CNTS-WATER AND HUMAN BLOOD BASED CASSON NANOFLUID FLOW OVER A STRETCHING SHEET UNDER IMPACT OF MAGNETIC FIELD

    Hamzeh T. Alkasasbeha,*, Mohammed Z. Swalmehb , Hebah G. Bani Saeedc , Feras M. Al Faqihc , Adeeb G. Talafhac

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-7, 2020, DOI:10.5098/hmt.14.15

    Abstract This study aims at considering the properties of heat transfer and magneto-hydrodynamics (MHD) Casson nanofluid at the existence of free convection boundary layer flow with Carbon Nanotubes (CNTs) suspended in human blood/water as based fluid on a stretching sheet. Two types of CNTs nanoparticles, single walled carbon nanotubes (SWCNTs) and multi walled carbon nanotubes (MWCNTs), are taken into account. The governing partial differential equations are transformed to partial differential equations using similar transformation, then solved numerically by an implicit finite difference scheme known as Keller-box method (KBM). The results for physical quantities, the local skin friction, and local Nusselt number,… More >

  • Open Access

    ARTICLE

    Piezoresistive Prediction of CNTs-Embedded Cement Composites via Machine Learning Approaches

    Jinho Bang1, SongEe Park2, Haemin Jeon2,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1503-1519, 2022, DOI:10.32604/cmc.2022.020485

    Abstract Conductive cementitious composites are innovated materials that have improved electrical conductivity compared to general types of cement, and are expected to be used in a variety of future infrastructures with unique functionalities such as self-heating, electromagnetic shielding, and piezoelectricity. In the present study, machine learning methods that have been recently applied in various fields were proposed for the prediction of piezoelectric characteristics of carbon nanotubes (CNTs)-incorporated cement composites. Data on the resistivity change of CNTs/cement composites according to various water/binder ratios, loading types, and CNT content were considered as training values. These data were applied to numerous machine learning techniques… More >

  • Open Access

    REVIEW

    Carbon nanotubes: A review on risks assessment, mechanism of toxicity and future directives to prevent health implication

    PIYOOSH KUMAR BABELE1,2,#,*, MAHENDRA KUMAR VERMA2,#, RAVI KANT BHATIA3,#

    BIOCELL, Vol.45, No.2, pp. 267-279, 2021, DOI:10.32604/biocell.2021.013409

    Abstract Carbon nanotubes (CNTs) have tremendous applications in almost every walk of life; however, their harmful impacts on humans and the environment are not well addressed. CNTs have been used in various applications ranging from medical science to different engineering branches, to ease human life. Generally, the toxicological profile of CNTs under laboratory conditions cannot be assessed primarily in medical science due to the inconsistent availability of cytotoxic study data. CNT toxicity has been affected by many physicochemical properties (e.g., size, type of functionalization), concentration, the extent of exposure, mode of exposure, and even the solvents/medium used to dissolve/disperse CNTs for… More >

  • Open Access

    ARTICLE

    Darcy-Forchheimer Hybrid Nano Fluid Flow with Mixed Convection Past an Inclined Cylinder

    M. Bilal1, Imran Khan1, Taza Gul1,*, Asifa Tassaddiq2, Wajdi Alghamdi3, Safyan Mukhtar4, Poom Kumam5

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 2025-2039, 2021, DOI:10.32604/cmc.2020.012677

    Abstract This article aims to investigate the Darcy Forchhemier mixed convection flow of the hybrid nanofluid through an inclined extending cylinder. Two different nanoparticles such as carbon nanotubes (CNTs) and iron oxide Fe3O4 have been added to the base fluid in order to prepare a hybrid nanofluid. Nonlinear partial differential equations for momentum, energy and convective diffusion have been changed into dimensionless ordinary differential equations after using Von Karman approach. Homotopy analysis method (HAM), a powerful analytical approach has been used to find the solution to the given problem. The effects of the physical constraints on velocity, concentration and temperature profile… More >

  • Open Access

    ARTICLE

    Sunflower-Like SrCo2S4@f-MWCNTs Hybrid Wrapped by Engineering N-Reduced Graphene Oxide for High Performance Dye-Sensitized Solar Cells

    Weiming Zhang1, Muhammad Wasim Khan1, Xueqin Zuo1, Qun Yang1, Huaibao Tang1,2, Shaowei Jin1,2, Guang Li1,2,3,*

    Journal of Renewable Materials, Vol.8, No.4, pp. 431-446, 2020, DOI:10.32604/jrm.2020.09158

    Abstract A novel sunflower-like nanocomposite of SrCo2S4 nanoflakes and functionalized multiwall carbon nanotubes (f-MWCNTs) entanglement enveloped in nitrogen-reduced graphene oxide (N-RGO) is prepared by a cheap process. The unique entanglement structure of the material exhibits higher specific surface area, better electrical conductivity and other properties. This helps to reduce the transfer resistance in the photoelectric process of the battery and improve the electrochemical activity, thus increasing the photoelectric conversion efficiency of the battery. The new ternary cobalt-based sulfide material can replace platinum as the counter electrode (CE) material loaded on dye-sensitized solar cells (DSSCs). DSSCs with SrCo2S4@f-MWCNTs@N-RGO (SCS@f-M@N-R) as CE material… More >

  • Open Access

    ARTICLE

    Ecofriendly E-Nose Based in PLA and Only 0.3 wt% of CNTs

    Laura Ribba, Jonathan Cimadoro, Silvia Goyanes*

    Journal of Renewable Materials, Vol.7, No.4, pp. 355-363, 2019, DOI:10.32604/jrm.2019.04083

    Abstract In this work, conductive polymer nanocomposites were developed based on a biodegradable and biobased polymer (poly (lactic acid)), with the incorporation of only 0.3 wt% of carbon nanotubes (CNTs) to be used as volatile solvent sensors. The correct dispersion of the nanofiller was achieved thanks to a CNT non-covalent modification with an azo-dye (disperse orange 3) which allowed to reach the percolation for electric conduction in values as low as 0.3 wt%. The chemo-resistive properties of the developed sensors were investigated by exposure to organic vapors (ethanol, tetrahydrofuran and toluene) and water vapor, showing good selectivity. In addition, considering the… More >

Displaying 1-10 on page 1 of 11. Per Page