Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12,924)
  • Open Access

    ARTICLE

    Thermal-Cyclic Fatigue Life Analysis and Reliability Estimation of a FCCSP based on Probabilistic Design Concept

    Yao Hsu1, Chih-Yen Su2, Wen-Fang Wu3,4

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 155-176, 2013, DOI:10.3970/cmc.2013.036.155

    Abstract To study the fatigue reliability of a flip-chip chip scale package (FCCSP) subject to thermal cyclic loading, a Monte Carlo simulation-based parametric study is carried out in the present study. A refined procedure as compared with the recently released Probabilistic Design System (PDS) of ANSYS is proposed and employed in particular. The thermal-cyclic fatigue life of the package is discussed in detail since it is related directly to the reliability of the package. In consideration of the analytical procedure as well as real manufacturing processes, a few geometric dimensions and material properties of the package are assumed random. The empirical… More >

  • Open Access

    ARTICLE

    Correspondence Relations for Fracture Parameters of Interface Corners in Anisotropic Viscoelastic Materials

    Chyanbin Hwu1, Tai-Liang Kuo2

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 135-153, 2013, DOI:10.3970/cmc.2013.036.135

    Abstract The problems of the interface corners between two dissimilar anisotropic viscoelastic materials are studied in this paper. Through the use of the well-known correspondence principle between linear elasticity and linear viscoelasticity, fracture parameters in the Laplace domain can be obtained from the path-independent H-integral for the corresponding problems of anisotropic linear elastic materials. Further application of the correspondence relations for fracture parameters proposed in our recent study then leads us the solutions of fracture parameters in the time domain. To show the applicability and accuracy of the proposed method, several different kinds of numerical examples are presented such as a… More >

  • Open Access

    ARTICLE

    Estimation of the Mechanical Property of CNT Ropes Using Atomistic-Continuum Mechanics and the Equivalent Methods

    C.J. Huang1, T.Y. Hung1, K.N. Chiang2

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 99-133, 2013, DOI:10.3970/cmc.2013.036.099

    Abstract The development in the field of nanotechnology has prompted numerous researchers to develop various simulation methods for determining the material properties of nanoscale structures. However, these methods are restricted by the speed limitation of the central processing unit (CPU), which cannot estimate larger-scale nanoscale models within an acceptable time. Thus, decreasing the CPU processing time and retaining the estimation accuracy of physical properties of nanoscale structures have become critical issues. Accordingly, this study aims to decrease the CPU processing time and complexity of large nanoscale models by utilizing, atomistic-continuum mechanics (ACM) to build an equivalent model of carbon nanotubes (CNTs).… More >

  • Open Access

    ARTICLE

    Multivariate Adaptive Regression Splines Model to Predict Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams

    P. Yuvaraj1, A. Ramachandra Murthy2, Nagesh R. Iyer3, Pijush Samui4, S.K. Sekar5

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 73-97, 2013, DOI:10.3970/cmc.2013.036.073

    Abstract This paper presents Multivariate Adaptive Regression Splines (MARS) model to predict the fracture characteristics of high strength and ultra high strength concrete beams. Fracture characteristics include fracture energy (GF), critical stress intensity factor (KIC) and critical crack tip opening displacement (CTODc). This paper also presents the details of development of MARS model to predict failure load (Pmax) of high strength concrete (HSC) and ultra high strength concrete (UHSC) beam specimens. Characterization of mix and testing of beams of high strength and ultra strength concrete have been described. Methodologies for evaluation of fracture energy, critical stress intensity factor and critical crack… More >

  • Open Access

    ARTICLE

    Forced Vibration of the Pre-Stressed and Imperfectly Bonded Bi-Layered Plate Strip Resting on a Rigid Foundation

    S.D. Akbarov1,2, E. Hazar3, M. Eröz3

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 23-48, 2013, DOI:10.3970/cmc.2013.036.023

    Abstract Within the scope of the piecewise homogeneous body model with utilizing of the three dimensional linearized theory of elastic waves in initially stressed bodies the influence of the shear-spring type imperfection of the contact conditions between the layers of the pre-stressed bi-layered plate strip resting on the rigid foundation, on the frequency response of this plate strip is investigated. The corresponding mathematical problem is solved numerically by employing FEM and numerical results illustrating the influence of the parameter characterizing the degree of the mentioned imperfectness, on the frequency response of the normal stress acting on the interface planes between the… More >

  • Open Access

    ARTICLE

    Low and Intermediate Re Solution of Lid Driven Cavity Problem by Local Radial Basis Function Collocation Method

    K. Mramor1, R. Vertnik2,3, B. Šarler1,3,4,5

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 1-21, 2013, DOI:10.3970/cmc.2013.036.001

    Abstract This paper explores the application of Local Radial Basis Function Collocation Method (LRBFCM) [Šarler and Vertnik (2006)] for solution of Newtonian incompressible 2D fluid flow for a lid driven cavity problem [Ghia, Ghia, and Shin (1982)] in primitive variables. The involved velocity and pressure fields are represented on overlapping five-noded sub-domains through collocation by using Radial Basis Functions (RBF). The required first and second derivatives of the fields are calculated from the respective derivatives of the RBF’s. The momentum equation is solved through explicit time stepping. The method is alternatively structured with multiquadrics and inverse multiquadrics RBF’s. In addition, two… More >

  • Open Access

    ARTICLE

    Multiscale Fatigue Life Prediction for Composite Panels

    Brett A. Bednarcyk1, Phillip W. Yarrington2, Steven M. Arnold3

    CMC-Computers, Materials & Continua, Vol.35, No.3, pp. 229-254, 2013, DOI:10.3970/cmc.2013.035.229

    Abstract Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer’s coupling with NASA’s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated.… More >

  • Open Access

    ARTICLE

    Analytical Models for Sliding Interfaces Associated with Fibre Fractures or Matrix Cracks

    L. N. McCartney1

    CMC-Computers, Materials & Continua, Vol.35, No.3, pp. 183-227, 2013, DOI:10.3970/cmc.2013.035.183

    Abstract Analytical stress transfer models are described that enable estimates to be made of the stress and displacement fields that are associated with fibre fractures or matrix cracks in unidirectional fibre reinforced composites. The models represent a clear improvement on popular shear-lag based methodologies. The model takes account of thermal residual stresses, and is based on simplifying assumptions that the axial stress in the fibre is independent of the radial coordinate, and similarly for the matrix. A representation for both the stress and displacement fields is derived that satisfies exactly the equilibrium equations, the required interface continuity equations for displacement and… More >

  • Open Access

    ARTICLE

    Investigation of Progressive Damage and Fracture in Laminated Composites Using the Smeared Crack Approach

    Christian Heinrich1, Anthony M. Waas2

    CMC-Computers, Materials & Continua, Vol.35, No.2, pp. 155-181, 2013, DOI:10.3970/cmc.2013.035.155

    Abstract The smeared crack approach (SCA) is revisited to describe post-peak softening in laminated composite materials. First, predictions of the SCA are compared against linear elastic fracture mechanics (LEFM) based predictions for the debonding of an adhesively bonded double cantilever beam. A sensitivity analysis is performed to establish the influence of element size and cohesive strength on the load-deflection response. The SCA is further validated by studying the in-plane fracture of a laminated composite in a single edge bend test configuration. In doing so, issues related to mesh size and their effects (or non-effects) are discussed and compared against other predictive… More >

  • Open Access

    ARTICLE

    Prediction of Delamination Onset and Critical Force in Carbon/Epoxy Panels Impacted by Ice Spheres

    Jennifer D. Rhymer1, Hyonny Kim1

    CMC-Computers, Materials & Continua, Vol.35, No.2, pp. 87-117, 2013, DOI:10.3970/cmc.2013.035.087

    Abstract Polymer matrix composite structures are exposed to a variety of impact threats including hail ice. Internal delamination damage created by these impacts can exist in a form that is visually undetectable. This paper establishes an analysis methodology for predicting the onset of delamination damage in toughened carbon/epoxy composite laminates when impacted by high velocity ice spheres (hailstones). Experiments and analytical work focused on ice sphere impact onto composite panels have determined the failure threshold energy as a function of varying ice diameter and panel thickness, and have established the ability to predict the onset of delamination using cohesive elements in… More >

Displaying 12761-12770 on page 1277 of 12924. Per Page