Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12,936)
  • Open Access

    ARTICLE

    Effect of the Strain Rate and Microstructure on Damage Growth in Aluminum

    R. R. Valisetty1, A.M. Dongare2, A.M. Rajendran3, R. R. Namburu1

    CMC-Computers, Materials & Continua, Vol.36, No.3, pp. 231-255, 2013, DOI:10.3970/cmc.2013.036.231

    Abstract Materials used in soldier protective structures, such as armor, vehicles and civil infrastructures, are being improved for performance in extreme dynamic environments. Nanocrystalline metals show significant promise in the design of these structures with superior strengths attributed to the dislocation-based and grain-boundary-based processes as compared to their polycrystalline counterparts. An optimization of these materials, however, requires a fundamental understanding of damage evolution at the atomic level. Accordingly, atomistic molecular dynamics simulations are performed using an embedded-atom method (EAM) potential on three nano-crystalline aluminum atom systems, one a Voronoi-based nano-crystalline system with an average grain size of 10 nm, and the… More >

  • Open Access

    ARTICLE

    Heat Conduction Analysis of Nonhomogeneous Functionally Graded Three-Layer Media

    Chien-Ching Ma1,2, Yi-Tzu Chen2

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 177-201, 2013, DOI:10.3970/cmc.2013.036.177

    Abstract Functionally graded material (FGM) is a particulate composite with continuously changing its thermal and mechanical properties in order to raise the bonding strength in the discrete composite made from different phases of material constituents. Furthermore, FGM is a potent tool to create an intermediate layer in metal–ceramic composites to avoid the properties discontinuities and reduce, thereby, the residual stresses. For the nonhomogeneous problem, the mathematical derivation is much complicated than the homogeneous case since the material properties vary with coordinate. To analyze the problem, the Fourier transform is applied and the general solution in transform domain is obtained. The inverse… More >

  • Open Access

    ARTICLE

    Thermal-Cyclic Fatigue Life Analysis and Reliability Estimation of a FCCSP based on Probabilistic Design Concept

    Yao Hsu1, Chih-Yen Su2, Wen-Fang Wu3,4

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 155-176, 2013, DOI:10.3970/cmc.2013.036.155

    Abstract To study the fatigue reliability of a flip-chip chip scale package (FCCSP) subject to thermal cyclic loading, a Monte Carlo simulation-based parametric study is carried out in the present study. A refined procedure as compared with the recently released Probabilistic Design System (PDS) of ANSYS is proposed and employed in particular. The thermal-cyclic fatigue life of the package is discussed in detail since it is related directly to the reliability of the package. In consideration of the analytical procedure as well as real manufacturing processes, a few geometric dimensions and material properties of the package are assumed random. The empirical… More >

  • Open Access

    ARTICLE

    Correspondence Relations for Fracture Parameters of Interface Corners in Anisotropic Viscoelastic Materials

    Chyanbin Hwu1, Tai-Liang Kuo2

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 135-153, 2013, DOI:10.3970/cmc.2013.036.135

    Abstract The problems of the interface corners between two dissimilar anisotropic viscoelastic materials are studied in this paper. Through the use of the well-known correspondence principle between linear elasticity and linear viscoelasticity, fracture parameters in the Laplace domain can be obtained from the path-independent H-integral for the corresponding problems of anisotropic linear elastic materials. Further application of the correspondence relations for fracture parameters proposed in our recent study then leads us the solutions of fracture parameters in the time domain. To show the applicability and accuracy of the proposed method, several different kinds of numerical examples are presented such as a… More >

  • Open Access

    ARTICLE

    Estimation of the Mechanical Property of CNT Ropes Using Atomistic-Continuum Mechanics and the Equivalent Methods

    C.J. Huang1, T.Y. Hung1, K.N. Chiang2

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 99-133, 2013, DOI:10.3970/cmc.2013.036.099

    Abstract The development in the field of nanotechnology has prompted numerous researchers to develop various simulation methods for determining the material properties of nanoscale structures. However, these methods are restricted by the speed limitation of the central processing unit (CPU), which cannot estimate larger-scale nanoscale models within an acceptable time. Thus, decreasing the CPU processing time and retaining the estimation accuracy of physical properties of nanoscale structures have become critical issues. Accordingly, this study aims to decrease the CPU processing time and complexity of large nanoscale models by utilizing, atomistic-continuum mechanics (ACM) to build an equivalent model of carbon nanotubes (CNTs).… More >

  • Open Access

    ARTICLE

    Multivariate Adaptive Regression Splines Model to Predict Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams

    P. Yuvaraj1, A. Ramachandra Murthy2, Nagesh R. Iyer3, Pijush Samui4, S.K. Sekar5

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 73-97, 2013, DOI:10.3970/cmc.2013.036.073

    Abstract This paper presents Multivariate Adaptive Regression Splines (MARS) model to predict the fracture characteristics of high strength and ultra high strength concrete beams. Fracture characteristics include fracture energy (GF), critical stress intensity factor (KIC) and critical crack tip opening displacement (CTODc). This paper also presents the details of development of MARS model to predict failure load (Pmax) of high strength concrete (HSC) and ultra high strength concrete (UHSC) beam specimens. Characterization of mix and testing of beams of high strength and ultra strength concrete have been described. Methodologies for evaluation of fracture energy, critical stress intensity factor and critical crack… More >

  • Open Access

    ARTICLE

    Forced Vibration of the Pre-Stressed and Imperfectly Bonded Bi-Layered Plate Strip Resting on a Rigid Foundation

    S.D. Akbarov1,2, E. Hazar3, M. Eröz3

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 23-48, 2013, DOI:10.3970/cmc.2013.036.023

    Abstract Within the scope of the piecewise homogeneous body model with utilizing of the three dimensional linearized theory of elastic waves in initially stressed bodies the influence of the shear-spring type imperfection of the contact conditions between the layers of the pre-stressed bi-layered plate strip resting on the rigid foundation, on the frequency response of this plate strip is investigated. The corresponding mathematical problem is solved numerically by employing FEM and numerical results illustrating the influence of the parameter characterizing the degree of the mentioned imperfectness, on the frequency response of the normal stress acting on the interface planes between the… More >

  • Open Access

    ARTICLE

    Low and Intermediate Re Solution of Lid Driven Cavity Problem by Local Radial Basis Function Collocation Method

    K. Mramor1, R. Vertnik2,3, B. Šarler1,3,4,5

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 1-21, 2013, DOI:10.3970/cmc.2013.036.001

    Abstract This paper explores the application of Local Radial Basis Function Collocation Method (LRBFCM) [Šarler and Vertnik (2006)] for solution of Newtonian incompressible 2D fluid flow for a lid driven cavity problem [Ghia, Ghia, and Shin (1982)] in primitive variables. The involved velocity and pressure fields are represented on overlapping five-noded sub-domains through collocation by using Radial Basis Functions (RBF). The required first and second derivatives of the fields are calculated from the respective derivatives of the RBF’s. The momentum equation is solved through explicit time stepping. The method is alternatively structured with multiquadrics and inverse multiquadrics RBF’s. In addition, two… More >

  • Open Access

    ARTICLE

    Multiscale Fatigue Life Prediction for Composite Panels

    Brett A. Bednarcyk1, Phillip W. Yarrington2, Steven M. Arnold3

    CMC-Computers, Materials & Continua, Vol.35, No.3, pp. 229-254, 2013, DOI:10.3970/cmc.2013.035.229

    Abstract Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer’s coupling with NASA’s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated.… More >

  • Open Access

    ARTICLE

    Analytical Models for Sliding Interfaces Associated with Fibre Fractures or Matrix Cracks

    L. N. McCartney1

    CMC-Computers, Materials & Continua, Vol.35, No.3, pp. 183-227, 2013, DOI:10.3970/cmc.2013.035.183

    Abstract Analytical stress transfer models are described that enable estimates to be made of the stress and displacement fields that are associated with fibre fractures or matrix cracks in unidirectional fibre reinforced composites. The models represent a clear improvement on popular shear-lag based methodologies. The model takes account of thermal residual stresses, and is based on simplifying assumptions that the axial stress in the fibre is independent of the radial coordinate, and similarly for the matrix. A representation for both the stress and displacement fields is derived that satisfies exactly the equilibrium equations, the required interface continuity equations for displacement and… More >

Displaying 12771-12780 on page 1278 of 12936. Per Page