Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13,060)
  • Open Access

    ARTICLE

    Effect of Electric Field on the Response of Clamped-FreeMagnetostrictive/Piezoelectric/Magnetostrictive Laminates

    Kotaro Mori1, Fumio Narita1, Yasuhide Shindo1

    CMC-Computers, Materials & Continua, Vol.23, No.3, pp. 187-200, 2011, DOI:10.3970/cmc.2011.023.187

    Abstract This work deals with the response of clamped-free magnetostrictive/piezoelectric/magnetostrictive laminates under electric field both numerically and experimentally. The laminate is fabricated using two magnetostrictive Terfenol-D layers and a soft piezoelectric PZT layer. Easy axis of Terfenol-D layers is length direction, while the polarization of PZT layer is the thickness direction. The magnetostriction of the Terfenol-D layers bonded to the upper and lower surfaces of the PZT layer is first measured. Next, a nonlinear finite element analysis is employed to evaluate the second-order magnetoelastic constants in the Terfenol-D layers bonded to the PZT layer using measured data. The induced magnetic field… More >

  • Open Access

    ARTICLE

    The Global Nonlinear Galerkin Method for the Solution of von Karman Nonlinear Plate Equations: An Optimal & Faster Iterative Method for the Direct Solution of Nonlinear Algebraic Equations F(x) = 0, using x· = λ[αF + (1 - α)BTF]

    Hong-Hua Dai1,2, Jeom Kee Paik3, S. N. Atluri2

    CMC-Computers, Materials & Continua, Vol.23, No.2, pp. 155-186, 2011, DOI:10.3970/cmc.2011.023.155

    Abstract The application of the Galerkin method, using global trial functions which satisfy the boundary conditions, to nonlinear partial differential equations such as those in the von Karman nonlinear plate theory, is well-known. Such an approach using trial function expansions involving multiple basis functions, leads to a highly coupled system of nonlinear algebraic equations (NAEs). The derivation of such a system of NAEs and their direct solutions have hitherto been considered to be formidable tasks. Thus, research in the last 40 years has been focused mainly on the use of local trial functions and the Galerkin method, applied to the piecewise… More >

  • Open Access

    ARTICLE

    Application of the Method of Fundamental Solutions and the Generalized Lagally Theorem to the Interaction of Solid Body and External Singularities in An Inviscid Fluid

    C. T. Wu1, F.-L. Yang2, D. L. Young3

    CMC-Computers, Materials & Continua, Vol.23, No.2, pp. 135-154, 2011, DOI:10.3970/cmc.2011.023.135

    Abstract This paper proposes a method that can calculate the hydrodynamic force of a non-circular object in an inviscid, irrotational, and incompressible flow with the presence of external flow singularities. In order to handle irregular object, the method of fundamental solutions (MFS) is employed to numerically construct the singularity system that describes the body and the flow motion and meets the boundary condition. The obtained singularity system is then integrated into the generalized Lagally theorem to compute the instantaneous hydrodynamic force via algebraic calculations and to describe the unsteady interaction of the object and its ambient flow. The proposed method is… More >

  • Open Access

    ARTICLE

    Nonlinear Compression Behavior of Warp-Knitted Spacer Fabric: Effect of Sandwich Structure

    Xiaonan Hou1, Hong Hu1, Yanping Liu1, Vadim Silberschmidt2

    CMC-Computers, Materials & Continua, Vol.23, No.2, pp. 119-134, 2011, DOI:10.3970/cmc.2011.023.119

    Abstract Compressibility of warp-knitted spacer fabrics is one of their important mechanical properties with regard to many special applications such as body protection, cushion and mattresses. Due to specific structural features of the fabric and a non-linear mechanical behavior of monofilaments, the compression properties of this kind of fabrics are very complicated. Although several studies have been performed to investigate their compression behavior, its mechanism has not well been understood yet. This work is concerned with a study of compression mechanism of a selected warp-knitted spacer fabric with a given sandwich structure. Both experimental and numerical methods are used to study… More >

  • Open Access

    ARTICLE

    Molecular Design of the Solid Copolymer Electrolyte- Poly(styrene-b-ethylene oxide) for Lithium Ion Batteries

    Cheng-Hung San1, Che-Wun Hong1,2

    CMC-Computers, Materials & Continua, Vol.23, No.2, pp. 101-118, 2011, DOI:10.3970/cmc.2011.023.101

    Abstract Poly(ethylene oxide) (PEO) is a commonly used electrolytic polymer in lithium ion batteries because of its high viscosity which allows fabricating thin layers. However, its inherent low ionic conductivity must be enhanced by the addition of highly conductive salt additives. Also its weak mechanical strength needs a complementary block, such as poly(styrene) (PS), to strengthen the electrolytic membrane during charging/discharging processes. PS is a strong material to complement the PEO and to create a reinforced copolymer electrolyte termed as the poly(styrene-b-ethylene oxide) (PS-PEO). In this work, molecular dynamics simulations are employed to study the effects of doping the PS constituents… More >

  • Open Access

    ARTICLE

    The Global Nonlinear Galerkin Method for the Analysis of Elastic Large Deflections of Plates under Combined Loads: A Scalar Homotopy Method for the Direct Solution of Nonlinear Algebraic Equations

    Hong-Hua Dai1,2, Jeom Kee Paik3, Satya N. Atluri2

    CMC-Computers, Materials & Continua, Vol.23, No.1, pp. 69-100, 2011, DOI:10.3970/cmc.2011.023.069

    Abstract In this paper, the global nonlinear Galerkin method is used to perform an accurate and efficient analysis of the large deflection behavior of a simply-supported rectangular plate under combined loads. Through applying the Galerkin method to the governing nonlinear partial differential equations (PDEs) of the plate, we derive a system of coupled third order nonlinear algebraic equations (NAEs). However, the resultant system of NAEs is thought to be hard to tackle because one has to find the one physical solution from among the possible multiple solutions. Therefore, a suitable initial guess is required to lead to the real solution for… More >

  • Open Access

    ARTICLE

    An Interaction Integral Method for Computing Fracture Parameters in Functionally Graded Magnetoelectroelastic Composites

    J. Sladek1, V. Sladek1, P. Stanak1, Ch. Zhang2, M. Wünsche2

    CMC-Computers, Materials & Continua, Vol.23, No.1, pp. 35-68, 2011, DOI:10.3970/cmc.2011.023.035

    Abstract A contour integral method is developed for the computation of stress intensity, electric and magnetic intensity factors for cracks in continuously nonhomogeneous magnetoelectroelastic solids under a transient dynamic load. It is shown that the asymptotic fields in the crack-tip vicinity in a continuously nonhomogeneos medium are the same as in a homogeneous one. A meshless method based on the local Petrov-Galerkin approach is applied for the computation of the physical fields occurring in the contour integral expressions of intensity factors. A unit step function is used as the test functions in the local weak-form. This leads to local integral equations… More >

  • Open Access

    ARTICLE

    A Coupling Algorithm of Finite Element Method and Smoothed Particle Hydrodynamics for Impact Computations

    Yihua Xiao1, Xu Han1,2, Dean Hu1

    CMC-Computers, Materials & Continua, Vol.23, No.1, pp. 9-34, 2011, DOI:10.3970/cmc.2011.023.009

    Abstract For impact computations, it is efficient to model small and large deformation regions by Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH), respectively. However, it requires an effective algorithm to couple FEM and SPH calculations. To fulfill this requirement, an alternative coupling algorithm is presented in this paper. In the algorithm, the coupling between element and particle regions are achieved by treating elements as imaginary particles and applying equivalent tractions to element sides on coupling interfaces. In addition, an adaptive coupling technique is proposed based on the algorithm to improve the computational efficiency of FEM-SPH coupling further. For this… More >

  • Open Access

    ARTICLE

    Estimation of Natural-Convection Heat-Transfer Characteristics from Vertical Fins Mounted on a Vertical Plate

    H. T. Chen1,K. H. Hsu1, S. K. Lee1, L. Y. Haung1

    CMC-Computers, Materials & Continua, Vol.22, No.3, pp. 239-260, 2011, DOI:10.3970/cmc.2011.022.239

    Abstract The inverse scheme of the finite difference method in conjunction with the least-squares scheme and experimental measured temperatures is proposed to solve a two-dimensional steady-state inverse heat conduction problem in order to estimate the natural-convection heat transfer coefficient under the isothermal situation [`h] iso from three vertical fins mounted on a vertical plate and fin efficiency hf for various values of the fin spacing and fin height. The measured fin temperatures and ambient air temperature are measured from the present experimental apparatus conducted in a small wind tunnel. The heat transfer coefficient on the middle fin of three vertical fins… More >

  • Open Access

    ARTICLE

    A Meshless Approach Towards Solution of Macrosegregation Phenomena

    Gregor Kosec1, Miha Založnik2, Božidar Šarler1, Hervé Combeau2

    CMC-Computers, Materials & Continua, Vol.22, No.2, pp. 169-196, 2011, DOI:10.3970/cmc.2011.022.169

    Abstract The simulation of macrosegregation as a consequence of solidification of a binary Al-4.5%Cu alloy in a 2-dimensional rectangular enclosure is tackled in the present paper. Coupled volume-averaged governing equations for mass, energy, momentum and species transfer are considered. The phase properties are resolved from the Lever solidification rule, the mushy zone is modeled by the Darcy law and the liquid phase is assumed to behave like an incompressible Newtonian fluid. Double diffusive effects in the melt are modeled by the thermal and solutal Boussinesq hypothesis. The physical model is solved by the novel Local Radial Basis Function Collocation Method (LRBFCM).… More >

Displaying 12931-12940 on page 1294 of 13060. Per Page