Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Ensemble 1D DenseNet Damage Identification Method Based on Vibration Acceleration

    Chun Sha1,*, Chaohui Yue2, Wenchen Wang3

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 369-381, 2023, DOI:10.32604/sdhm.2023.027948

    Abstract Convolution neural networks in deep learning can solve the problem of damage identification based on vibration acceleration. By combining multiple 1D DenseNet submodels, a new ensemble learning method is proposed to improve identification accuracy. 1D DenseNet is built using standard 1D CNN and DenseNet basic blocks, and the acceleration data obtained from multiple sampling points is brought into the 1D DenseNet training to generate submodels after offset sampling. When using submodels for damage identification, the voting method ideas in ensemble learning are used to vote on the results of each submodel, and then vote centrally. Finally, the cantilever damage problem… More >

  • Open Access

    ARTICLE

    A Suitable Active Control for Suppression the Vibrations of a Cantilever Beam

    Y. A. Amer1, A. T. EL-Sayed2, M. N. Abd EL-Salam3,*

    Sound & Vibration, Vol.56, No.2, pp. 89-104, 2022, DOI:10.32604/sv.2022.011838

    Abstract In our consideration, a comparison between four different types of controllers for suppression the vibrations of the cantilever beam excited by an external force is carried out. Those four types are the linear velocity feedback control, the cubic velocity feedback control, the non-linear saturation controller (NSC) and the positive position feedback (PPF) controller. The suitable type is the PPF controller for suppression the vibrations of the cantilever beam. The approximate solution obtained up to the first approximation by using the multiple scale method. The PPF controller effectiveness is studied on the system. We used frequency-response equations to investigate the stability… More >

  • Open Access

    ARTICLE

    Modal Control of Cantilever Beam Using a Gyrostabilizer

    Olkan Çuvalcı1, Faruk Ünker2,*, Turgut Batuhan Baturalp3, Utku Gülbulak3, Atila Ertaş3

    Sound & Vibration, Vol.55, No.4, pp. 281-294, 2021, DOI:10.32604/sv.2021.015705

    Abstract In this paper, an experimental model of a horizontal cantilever beam with a rotating/oscillating attached to the shaker for harmonic excitation at the one end and a gyrostabilizer at the other end is built to verify the equations of the Lagrangian model. The primary focus of the study was to investigate the parameters of excitation amplitude, natural frequency, rotating mass (disk mass), and disk speed of gyro that would minimize the amplitude of the beam to identify these effects. Numerical and experimental results indicate that the angular momentum of the gyrostabilizer is the most effective parameter in the reduction of… More >

  • Open Access

    ARTICLE

    Simulation of Coupling Process of Flexible Needle Insertion into Soft Tissue Based on ABAQUS

    Linze Wang1, Dedong Gao1, *, Jiajie Fu1, Yuzhou Luo2, Shijian Zhao1

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 1153-1169, 2020, DOI:10.32604/cmc.2020.010073

    Abstract In order to get to the desired target inside the body, it is essential to investigate the needle-tissue coupling process and calculate the tissue deformation. A cantilever beam model is presented to predicting the deflection and bending angle of flexible needle by analyzing the distribution of the force on needle shaft during the procedure of needle insertion into soft tissue. Furthermore, a finite element (FE) coupling model is proposed to simulate the needle-tissue interactive process. The plane and spatial models are created to relate the needle and tissue nodes. Combined with the cantilever beam model and the finite element needle-tissue… More >

  • Open Access

    ARTICLE

    Matrix Crack Effects on Composite Beams with Damage Tolerant Non-Traditional Layups

    G. Sarangapani1, Ranjan Ganguli2

    Structural Durability & Health Monitoring, Vol.9, No.1, pp. 67-86, 2013, DOI:10.32604/sdhm.2013.009.067

    Abstract Two traditional layups built from 0°/45°/90° plies and two recently proposed alternative non-traditional layups built from 5° /65° plies are analyzed in this paper. It was recently shown experimentally that using such off-axis plies in a composite laminate will result in a more damage tolerant structure. A cantilever beam with two traditional layup composite laminates and two non-traditional layup composite laminates is considered in this paper. Both traditional and non-traditional layup schemes are chosen such that they are "hard" laminates, i.e, much stiffer in the longitudinal direction than the lateral direction. The damage is simulated on the beams using a… More >

  • Open Access

    ARTICLE

    Influence of an Atmospheric Pressure Plasma Surface Treatment on the Interfacial Fracture Toughness on Bonded Composite Joints

    J. Mohan1, D. Carolan1, N. Murphy1, A. Ivankovic1, D. Dowling1

    Structural Durability & Health Monitoring, Vol.3, No.2, pp. 81-86, 2007, DOI:10.3970/sdhm.2007.003.081

    Abstract The aim of this work is to investigate the influence of a variety of plasma treatments on the surface properties of an epoxy-based composite material and to establish a relationship between these properties and the subsequent mechanical behaviour of adhesively bonded joints. To this end, specimens were subjected to three different types of plasma treatment: two short treatments (2min) of He and He plus O2, and one long treatment (15min) of He plus O2. The variation in surface energy of the composite specimens was examined in each case over a period of up to 3 days using contact angle measurements.… More >

  • Open Access

    ABSTRACT

    Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites

    K. Gordnian1, H. Hadavinia1, G. Simpson1, A. Aboutorabi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.1, No.2, pp. 61-68, 2007, DOI:10.3970/icces.2007.001.061

    Abstract The compliance equation is used to calculate the energy release rate for angle ply laminated double cantilever composite beam specimen. Instead of the traditional approach of a beam on an elastic foundation, a second order shear thickness deformation beam theory (SSTDBT) has been considered. More >

  • Open Access

    ARTICLE

    Wavelet-based Inclusion Detection in Cantilever Beams

    Zheng Li1,2, Wei Zhang1, Kezhuang Gong1

    CMC-Computers, Materials & Continua, Vol.9, No.3, pp. 209-228, 2009, DOI:10.3970/cmc.2009.009.209

    Abstract In this paper, continuous wavelet transform has been applied to inclusion detection in cantilever beams. By means of FEM, a cantilever beam with an inclusion is subjected to an impact on its free end, and its stress wave propagation process is calculated. Here, two kinds of inclusions which are distinct in material behavior have been discussed. And we change the inclusion's sizes in the beam and set it in three different positions to simulate some complicated situations. For soft inclusion, the results show that the arrival times of incident and reflective wave are distinguishable by performing Gabor wavelet transform and… More >

Displaying 1-10 on page 1 of 8. Per Page