Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (422)
  • Open Access

    ARTICLE

    Experimental Investigation on Hydrophobic Behavior of Carbon Spheres Coated Surface Made from Microplastics

    Peng Liu, Bin Bai, Cui Wang, Yunan Chen, Zhiwei Ge, Wenwen Wei, Hui Jin*

    Journal of Renewable Materials, Vol.9, No.12, pp. 2159-2174, 2021, DOI:10.32604/jrm.2021.016166 - 22 June 2021

    Abstract In this paper, a simple method to plate a hydrophobic coating on the inner surface of a small-scaled tube was proposed, where the coating consisted of carbon microspheres. Three common plastics polystyrene, polycarbonate and polyethylene were used as the feedstocks to be processed in supercritical water in a quartz tubular reactor. After reaction, the contact angle of droplet on the inner surface of the quartz tube was turned out to be over 100°, significantly larger than that of the blank tube 54°. When processing polystyrene in the 750C supercritical water for 10 min, the largest… More > Graphic Abstract

    Experimental Investigation on Hydrophobic Behavior of Carbon Spheres Coated Surface Made from Microplastics

  • Open Access

    ARTICLE

    Will Coal Price Fluctuations Affect Renewable Energy Substitution and Carbon Emission? A Computable General Equilibrium-Based Study of China

    Wenhui Zhao1, Yibo Yin1,*, Lu Mao2, Konglu Zhong3, Guanghui Yuan4, Hai Huang5, Yige Yang6

    Energy Engineering, Vol.118, No.4, pp. 1009-1026, 2021, DOI:10.32604/EE.2021.014650 - 31 May 2021

    Abstract Changes in the energy price system will determine the direction of evolution of the energy industry structure. As a country where coal is the dominant energy source, what is the effect of coal price fluctuations on China’s industry development costs and energy consumption structure? To investigate this problem, this paper utilized an economy–energy–environment computable general equilibrium model. In this study, four aspects were analyzed: Energy supply side, proportion of renewable energy consumption, macroeconomy, and changes in CO2 emissions. The results of this study show that an increase of 10%–20% in coal prices contributes to a shift More >

  • Open Access

    ARTICLE

    Factor Decomposition and Regression Analysis of the Energy Related Carbon Emissions in Shandong, China: A Perspective of Industrial Structure

    Weifeng Gong1,2, Baoqing Zhu3, Chuanhui Wang1,*, Zhenyue Fan1, Mengzhen Zhao1, Liang Chen4

    Energy Engineering, Vol.118, No.4, pp. 981-994, 2021, DOI:10.32604/EE.2021.014554 - 31 May 2021

    Abstract An in-depth study of the energy related carbon emissions has important practical significance for carbon emissions reduction and structural adjustment in Shandong Province and throughout China. Based on the perspective of industrial structure, the expanded KAYA equation to measure the energy related carbon emissions of the primary industries (Resources and Agriculture) and secondary industries (Manufacturing and Construction) and tertiary industries (Retail and Service) was utilized in Shandong Province from 2011 to 2017. The carbon emissions among industries in Shandong Province were empirically analyzed using the Logarithmic Mean Divisia Index decomposition approach. The results were follows:… More >

  • Open Access

    ARTICLE

    Carbonation Reaction of Lithium Hydroxide during Low Temperature Thermal Energy Storage Process

    Jun Li1,2,3, Tao Zeng1,2,3,*, Noriyuki Kobayashi4, Rongjun Wu4, Haotai Xu4, Lisheng Deng1,2,3, Zhaohong He1,2,3, Hongyu Huang1,2,3,*

    Journal of Renewable Materials, Vol.9, No.9, pp. 1621-2630, 2021, DOI:10.32604/jrm.2021.015231 - 23 April 2021

    Abstract In order to apply lithium hydroxide (LiOH) as a low temperature chemical heat storage material, the carbonation reaction of LiOH and the prevention method are focused in this research. The carbonation of raw LiOH at storage and hydration condition is experimentally investigated. The results show that the carbonation reaction of LiOH with carbon dioxide (CO2) is confirmed during the hydration reaction. The carbonation of LiOH can be easily carried out with CO2 at room temperature and humidity. LiOH can be carbonated at a humidity range of 10% to 20%, a normal humidity region that air can More >

  • Open Access

    ARTICLE

    A Numerical Study on the Propagation Mechanisms of Hydraulic Fractures in Fracture-Cavity Carbonate Reservoirs

    Fang Shi1,*, Daobing Wang2, Xiaogang Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 575-598, 2021, DOI:10.32604/cmes.2021.015384 - 19 April 2021

    Abstract Field data suggests that carbonate reservoirs contain abundant natural fractures and cavities. The propagation mechanisms of hydraulic fractures in fracture-cavity reservoirs are different from conventional reservoirs on account of the stress concentration surrounding cavities. In this paper, we develop a fully coupled numerical model using the extended finite element method (XFEM) to investigate the behaviors and propagation mechanisms of hydraulic fractures in fracture-cavity reservoirs. Simulation results show that a higher lateral stress coefficient can enhance the influence of the natural cavity, causing a more curved fracture path. However, lower confining stress or smaller in-situ stress… More >

  • Open Access

    ARTICLE

    Study on Carbonation Damage Constitutive Curve and Microscopic Damage Mechanism of Tailing Recycled Concrete

    Tao Li1,2,*, Sheliang Wang2, Fan Xu2,*, Binbin Li3, Bin Dang1, Meng Zhan4, Zhiqi Wang5

    Journal of Renewable Materials, Vol.9, No.8, pp. 1413-1432, 2021, DOI:10.32604/jrm.2021.012744 - 08 April 2021

    Abstract To improve the resource utilization of recycled aggregate concrete (RAC) and make use of the unique pozzolanic activation characteristics of iron ore tailing (IOT), the constitutive curves of tailing recycled concrete (TRC) before and after carbonization were analyzed theoretically, experimentally and microscopically. Firstly, according to the experimental data, the damage constitutive and related damage parameters of TRC were theoretically established by Weibull probability distribution function. Secondly, the comprehensive damage parameter b under different working conditions was studied. Finally, the damage mechanism was formed by EDS and SEM. The results showed that the damage constitutive model… More >

  • Open Access

    ARTICLE

    Emission Behaviors of Submicron Particles (PM1) Generated by the Combustion of Sesame Stalk after Combined Water Washing and Carbonization Pretreatment

    Tianyu Liu1, Chang Wen1,2,3,*, Wenyu Wang1, Kai Yan3, Yongjun Xia4, Rui Li3, Juan Liu4, Yang Zhang1

    Energy Engineering, Vol.118, No.3, pp. 473-485, 2021, DOI:10.32604/EE.2021.014870 - 22 March 2021

    Abstract Pretreatment before biomass combustion is significant for its efficient utilization and that combined water washing and carbonization can be efficient. An agricultural processing residues sesame stalk was selected and carried out two pretreatments separately, i.e., water washing-torrefaction (W-T) and torrefaction-water washing (T-W), to explore the effect on the fuel properties, combustion characteristics and particulate matter (PM) emission. The obtained biochar was also combusted under air and oxy50 (CO2:O2 = 50:50) conditions for the sake of investigating the effect of pretreatment and combustion atmosphere. The results indicate that, W-T and T-W both not only have great effect… More >

  • Open Access

    ARTICLE

    Thermodynamic Simulation on the Change in Phase for Carburizing Process

    Anh Tuan Hoang1, Xuan Phuong Nguyen2, Osamah Ibrahim Khalaf3, Thi Xuan Tran4, Minh Quang Chau5, Thi Minh Hao Dong2, Duong Nam Nguyen6,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1129-1145, 2021, DOI:10.32604/cmc.2021.015349 - 22 March 2021

    Abstract The type of technology used to strengthen the surface structure of machine parts, typically by carbon-permeation, has made a great contribution to the mechanical engineering industry because of its outstanding advantages in corrosion resistance and enhanced mechanical and physical properties. Furthermore, carbon permeation is considered as an optimal method of heat treatment through the diffusion of carbon atoms into the surface of alloy steel. This study presented research results on the thermodynamic calculation and simulation of the carbon permeability process. Applying Fick’s law, the paper calculated the distribution of carbon concentration in the alloy steel… More >

  • Open Access

    ARTICLE

    Novel Magnetically Interconnected Micro/Macroporous Structure of Monolithic Porous Carbon Adsorbent Derived from Sodium Alginate and Wasted Black Liquor and Its Adsorption Performance**

    Parichart Onsri1, Decha Dechtrirat2,3,4, Patcharakamon Nooeaid5, Apiluck Eiad-ua6, Pongsaton Amornpitoksuk1,7, Supanna Techasakul4, Ahmad Taufiq8, Laemthong Chuenchom1,7,*

    Journal of Renewable Materials, Vol.9, No.6, pp. 1059-1074, 2021, DOI:10.32604/jrm.2021.013362 - 11 March 2021

    Abstract The novel and facile preparation of magnetically interconnected micro/ macroporous structure of monolithic porous carbon adsorbent (MPCA) were designed and presented herein. The synthesis was achieved via conventional freeze-drying and pyrolysis processes. In this study, sodium alginate and wasted black liquor were employed as starting precursors. Sodium alginate acts as a template of materials, whereas black liquor, the wasted product from the paper industry with plentiful of lignin content and alkaline solution, played an essential role in the reinforcement and activation of porosity for the resulting materials. Moreover, both the precursors were well dissolved in Fe3+More >

  • Open Access

    ARTICLE

    Hydrogenated Amorphous Carbon Films from Palmyra Sugar

    Budhi Priyanto1,2,*, Retno Asih1, Irma Septi Ardiani1, Anna Zakiyatul Laila1, Khoirotun Nadiyyah1, Bima Romadhon3, Sarayut Tunmee4, Hideki Nakajima4, Triwikantoro1, Yoyok Cahyono1, Darminto1,*

    Journal of Renewable Materials, Vol.9, No.6, pp. 1087-1098, 2021, DOI:10.32604/jrm.2021.014466 - 11 March 2021

    Abstract A simple, highly reproducible, and environmentally friendly method is a considered approach in generating renewable energy materials. Here, hydrogenated amorphous carbon (a-C) films have been successfully prepared from palmyra liquid sugar, employing spin-coating and spraying methods. Compared with the former method, the latter shows a significance in producing a better homogeneity in particle size and film thickness. The obtained films have a thickness of approximately 1000 to 100 nm and contain an sp2 hexagonal structure (~70%) and sp3 tetrahedral configuration (~30%) of carbons. The introduction of boron (B) and nitrogen (N) as dopants has created the local More > Graphic Abstract

    Hydrogenated Amorphous Carbon Films from Palmyra Sugar

Displaying 241-250 on page 25 of 422. Per Page