Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (310)
  • Open Access

    ABSTRACT

    Thermal effect on the vibrational behaviors of single-walled carbon nanotubes using molecular dynamics and modified molecular structure mechanics

    Hsien-Chie Cheng1, Chun-Hung Wu2, Yang-Lun Liu2, Wen-Hwa Chen2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.11, No.3, pp. 65-66, 2009, DOI:10.3970/icces.2009.011.065

    Abstract This study attempts to explore the thermal effect on the vibrational behaviors of single-walled carbon nanotube (SWCNT) using both a constant temperature molecular dynamics (MD) simulation that incorporates a Nosé-Hoover thermostat and a modified molecular structure mechanics (MMSM) model. The MD simulation is combined with a Nosé-Hoover thermostat, which controls the temperature of the system by an additional thermal reservoir. On the other hand, the MMSM model adopts equivalent beam elements and spring elements to simulate the bonding and non-bonding interactions between atoms, respectively, where the effect of temperatures can be also taken into account through Badger's rules.
    The natural… More >

  • Open Access

    ABSTRACT

    Fracture Toughness of Carbon Nanofiber Reinforced Polylactic Acid at Room and Elevated Temperatures

    Y. Shimamura1, Y. Shibata2, K. Tohgo3, H. Araki4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.3, pp. 189-194, 2008, DOI:10.3970/icces.2008.006.189

    Abstract Polylactic acid (PLA) is a biodegradable plastic made from lactic acid, and can be produced by renewable raw materials. The mechanical properties of PLA are, however, not sufficient for structural materials. In our study, carbon nanofiber reinforced PLA was fabricated to overcome the deficiency of PLA and the mechanical properties were measured at room and elevated temperatures. Vapor grown carbon fiber (VGCF) was used for reinforcement. Three point bending specimens were fabricated by using injection molding, and then bending stiffness, bending strength and fracture toughness were measured for amorphous and crystallized specimens. As a result, it is shown that the… More >

  • Open Access

    ABSTRACT

    Carbon Nanotube Transmission between Linear and Rotational Motions

    Hanqing Jiang1, Junqiang Lu2, Min-Feng Yu2, Yonggang Huang3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.2, pp. 133-144, 2008, DOI:10.3970/icces.2008.006.133

    Abstract The periodic lattice registry of multi-walled carbon nanotubes (MWCNTs) have been exploited for the possibilities of development of nanodevices. This paper studied the telescoping behaviors of double-walled carbon nanotubes (DWCNTs) by atomic-scale finite element and tight-bind Green function methods. It was found that telescoping a DWCNT (e.g., (6,3)/(12,6)) will induce a rotational motion of the inner CNT that has a chirl angle θ (0◦ < θ < 30◦). This telescoping-induced rotational motion does not exist for armchair and zigzag DWCNTs due to the symmetry of CNTs. The rotational angle is completely determined by the chirality of the inner CNT and… More >

  • Open Access

    ABSTRACT

    Low-Velocity Impact Response of Braided Carbon/Epoxy Composites

    M.V.Hosur1, M. M. Islam, S. Jeelani

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.1, pp. 81-90, 2008, DOI:10.3970/icces.2008.006.081

    Abstract In this paper, low-velocity impact response of braided composites is presented. Three types of braided fabrics were used. They were:$\pm$45, 0/$\pm$45, and 0/$\pm$60. Laminates with 7 layers of$\pm$45 and 4 layers of 0/$\pm$45, and 0/$\pm$60 were fabricated by vacuum assisted resin infusion molding process to get an average thickness ranging from 2.25 to 2.4 mm. Samples of size 10$\times$ 10 cm were then cut from the panels and impacted at 10, 20 and 30 J. Impact parameters like peak load and absorbed energy were calculated and normalized for thickness. All the samples were then subjected to ultrasonic c-scan testing to… More >

  • Open Access

    ABSTRACT

    Comparative Study on Dry Reforming of Methane Over Co-M (M=Ce, Fe, Zr) Catalysts Supported on N-Doped Activated Carbon

    Yinghui Sun1, Guojie Zhang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.1, pp. 105-105, 2019, DOI:10.32604/icces.2019.05173

    Abstract A series of Co-M (M = Ce, Fe, Zr) binary oxides supported on N-doped catalysts were prepared by impregnation methods and tested for DRM reaction. Moreover, the influence of Co and Ce atomic contents in the catalysts on DRM performance was investigated. Significant enhancement of activity performance over Ce promoted 3Co-1Ce/AC-N catalyst was observed. Compared with Fe and Zr, the catalyst with 1/4 mol% of Ce showed the highest activity and was higher than the supported Co catalyst. The calcined and spent catalysts were characterized by XPS, H2-TPR, TEM and EDX mapping studies. The characterization results demonstrated that the improved… More >

  • Open Access

    ABSTRACT

    Buckling Detection Using Carbon Nanotube Reinforced Composite Sensors

    Enrique García-Macías1, Luis Rodríguez-Tembleque1, Felipe García-Sánchez2, Andrés Sáez1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.1, pp. 103-103, 2019, DOI:10.32604/icces.2019.05220

    Abstract Enhancing the strength-to-weight ratio in structural engineering has traditionally attracted great research efforts from both scientist and practicing engineers. Development of new composite materials and/or alternative structural configurations have led to slender designs, which may be prone to buckling failure. Meanwhile, the most recent advances in the field of Nanotechnology have allowed the development of new composite materials with not only low weight and adequate load-bearing capacity, but also additional self-sensing capabilities. Such multifunctional composites open a vast range of possibilities in the field of Structural Health Monitoring. In particular, this work analyzes-from a numerical perspective-the effective implementation of carbon… More >

  • Open Access

    ABSTRACT

    Crack-Induced Resistivity Changes in Carbon Nanotube Reinforced Composite

    Luis Rodríguez-Tembleque1,*, Enrique García-Macías1, Federico C. Buroni1, Felipe García-Sánchez2, Andrés Sáez1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.1, pp. 102-102, 2019, DOI:10.32604/icces.2019.05138

    Abstract The unique intrinsic physical properties, particularly rigidity and strength-to-weight ratio, of carbon nanotubes (CNTs) suggest that they are ideal fillers for high performance composites. However, most recent advances have allowed not only their rigidity and strength capacity, but also additional self-sensing capabilities. Such multifunctional capabilities of CNT reinforced composites open a vast range of possibilities in the field of Structural Health Monitoring. In particular, this work analyzes-from a numerical perspective-two possible effective implementations of CNTs reinforcements for crack and damage detection in structures or mechanical systems. The first strategy considers a reinforced epoxy strip-like sensor on a structure that assists… More >

  • Open Access

    ABSTRACT

    Experimental and Theoretical Investigations on Carbon Nanotube-Based Materials for Sensors and Actuators

    Erik T. Thostenson1, Chunyu Li1, Tsu-Wei Chou1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.1, pp. 29-34, 2007, DOI:10.3970/icces.2007.003.029

    Abstract With their well-known novel mechanical and electrical properties, carbon nanotubes are inherently multifunctional. Toward the development of multifunctional composite materials we have experimentally and theoretically investigated the use of carbon nanotubes as sensors and actuators. In this research work, we consider the nanotube within an external electric field with non-uniform charge distribution. Subsequently the charge induced deformations are investigated. We also demonstrate that conducting carbon nanotube networks formed in an epoxy polymer matrix can be utilized as highly-sensitive sensors for detecting the onset, nature and evolution of damage in advanced polymer-based composites. Using direct-current measurements the internal damage accumulation can… More >

  • Open Access

    ABSTRACT

    Impact Performance of Nanophased Woven Fabric Carbon/Epoxy Composite Laminates

    M.V. Hosur1, F.H. Chowdhury1, S. Jeelani1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.4, pp. 119-124, 2007, DOI:10.3970/icces.2007.002.119

    Abstract In the present study, Nanomer® I-28E, organically modified montmorillonite nanoclay supplied by Nanocor Inc., was used to modify SC-15, a toughened epoxy system using sonication route. Different weight percentage ranging from 1-3% of nanoclay was used. The modified epoxy was then used to fabricate 15-layer plain weave carbon/epoxy composite laminates using vacuum assisted resin transfer molding (VARTM) method. Samples of size 100 x 100 mm were cut from the laminates and were subjected to low-velocity impact loading using an instrumented drop-weight system (Dynatup Model 8210) at three different energy levels of 10, 20 and 30J. Transient response of the samples… More >

  • Open Access

    ARTICLE

    Electromagnetic Characterization of Recyclable Polymer Nanofibers Based on PSU/Carbonyl Iron

    Daniel Cônsoli Silveira1,*, Tiago Teixeira da Silva Braga1, Daniel Molina Gil1, Newton Adriano dos Santos Gomes2, Lilia Müller Guerrini3, Edson Cocchieri Botelho1

    Journal of Renewable Materials, Vol.7, No.3, pp. 279-287, 2019, DOI:10.32604/jrm.2019.01834

    Abstract This study investigated and defined the optimal processing parameters for the electrospinning of polysulfone polymer solutions with N,N-dimethylacetamide. Variation of parameters such as solute concentration, electrical voltage, and working distance were correlated with the quality of the obtained nanofibers using morphological characterization via scanning electron microscopy (SEM). Carbonyl iron additive was dispersed in the polymer solutions, using ultrasonic tip, and the material processed via electrospinning with aforementioned parameters defined. Nanofibers with the property of interaction with electromagnetic waves were obtained. The dispersion of different concentrations of the additive and electromagnetic characterizations in the X-band of microwaves (8.2 and 12.4 GHz),… More >

Displaying 221-230 on page 23 of 310. Per Page