Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (928)
  • Open Access

    ARTICLE

    Actor–Critic Trajectory Controller with Optimal Design for Nonlinear Robotic Systems

    Nien-Tsu Hu1,*, Hsiang-Tung Kao1, Chin-Sheng Chen1, Shih-Hao Chang2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074993 - 10 February 2026

    Abstract Trajectory tracking for nonlinear robotic systems remains a fundamental yet challenging problem in control engineering, particularly when both precision and efficiency must be ensured. Conventional control methods are often effective for stabilization but may not directly optimize long-term performance. To address this limitation, this study develops an integrated framework that combines optimal control principles with reinforcement learning for a single-link robotic manipulator. The proposed scheme adopts an actor–critic structure, where the critic network approximates the value function associated with the Hamilton–Jacobi–Bellman equation, and the actor network generates near-optimal control signals in real time. This dual… More >

  • Open Access

    ARTICLE

    Semi-Supervised Segmentation Framework for Quantitative Analysis of Material Microstructure Images

    Yingli Liu1,2, Weiyong Tang1,2, Xiao Yang1,2, Jiancheng Yin3,*, Haihe Zhou1,2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.074681 - 10 February 2026

    Abstract Quantitative analysis of aluminum-silicon (Al-Si) alloy microstructure is crucial for evaluating and controlling alloy performance. Conventional analysis methods rely on manual segmentation, which is inefficient and subjective, while fully supervised deep learning approaches require extensive and expensive pixel-level annotated data. Furthermore, existing semi-supervised methods still face challenges in handling the adhesion of adjacent primary silicon particles and effectively utilizing consistency in unlabeled data. To address these issues, this paper proposes a novel semi-supervised framework for Al-Si alloy microstructure image segmentation. First, we introduce a Rotational Uncertainty Correction Strategy (RUCS). This strategy employs multi-angle rotational perturbations… More >

  • Open Access

    REVIEW

    A State-of-the-Art Survey of Adversarial Reinforcement Learning for IoT Intrusion Detection

    Qasem Abu Al-Haija1,*, Shahad Al Tamimi2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073540 - 10 February 2026

    Abstract Adversarial Reinforcement Learning (ARL) models for intelligent devices and Network Intrusion Detection Systems (NIDS) improve system resilience against sophisticated cyber-attacks. As a core component of ARL, Adversarial Training (AT) enables NIDS agents to discover and prevent new attack paths by exposing them to competing examples, thereby increasing detection accuracy, reducing False Positives (FPs), and enhancing network security. To develop robust decision-making capabilities for real-world network disruptions and hostile activity, NIDS agents are trained in adversarial scenarios to monitor the current state and notify management of any abnormal or malicious activity. The accuracy and timeliness of… More >

  • Open Access

    ARTICLE

    An Efficient Certificateless Authentication Scheme with Enhanced Security for NDN-IoT Environments

    Feihong Xu1, Jianbo Wu1,*, Qing An1,*, Fei Zhu1,2, Zhaoyang Han3, Saru Kumari4

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073441 - 10 February 2026

    Abstract The large-scale deployment of Internet of Things (IoT) technology across various aspects of daily life has significantly propelled the intelligent development of society. Among them, the integration of IoT and named data networks (NDNs) reduces network complexity and provides practical directions for content-oriented network design. However, ensuring data integrity in NDN-IoT applications remains a challenging issue. Very recently, Wang et al. (Entropy, 27(5), 471(2025)) designed a certificateless aggregate signature (CLAS) scheme for NDN-IoT environments. Wang et al. stated that their construction was provably secure under various types of security attacks. Using theoretical analysis methods, in… More >

  • Open Access

    ARTICLE

    Segment-Conditioned Latent-Intent Framework for Cooperative Multi-UAV Search

    Gang Hou1,#, Aifeng Liu1,#, Tao Zhao1, Wenyuan Wei2, Bo Li1, Jiancheng Liu3,*, Siwen Wei4,5,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.073202 - 10 February 2026

    Abstract Cooperative multi-UAV search requires jointly optimizing wide-area coverage, rapid target discovery, and endurance under sensing and motion constraints. Resolving this coupling enables scalable coordination with high data efficiency and mission reliability. We formulate this problem as a discounted Markov decision process on an occupancy grid with a cellwise Bayesian belief update, yielding a Markov state that couples agent poses with a probabilistic target field. On this belief–MDP we introduce a segment-conditioned latent-intent framework, in which a discrete intent head selects a latent skill every K steps and an intra-segment GRU policy generates per-step control conditioned on More >

  • Open Access

    ARTICLE

    IPKE-MoE: Mixture-of-Experts with Iterative Prompts and Knowledge-Enhanced LLM for Chinese Sensitive Words Detection

    Longcang Wang, Yongbing Gao*, Xinguang Wang, Xin Liu

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072889 - 10 February 2026

    Abstract Aiming at the problem of insufficient recognition of implicit variants by existing Chinese sensitive text detection methods, this paper proposes the IPKE-MoE framework, which consists of three parts, namely, a sensitive word variant extraction framework, a sensitive word variant knowledge enhancement layer and a mixture-of-experts (MoE) classification layer. First, sensitive word variants are precisely extracted through dynamic iterative prompt templates and the context-aware capabilities of Large Language Models (LLMs). Next, the extracted variants are used to construct a knowledge enhancement layer for sensitive word variants based on RoCBert models. Specifically, after locating variants via n-gram… More >

  • Open Access

    ARTICLE

    FDEFusion: End-to-End Infrared and Visible Image Fusion Method Based on Frequency Decomposition and Enhancement

    Ming Chen1,*, Guoqiang Ma2, Ping Qi1, Fucheng Wang1, Lin Shen3, Xiaoya Pi1

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072623 - 10 February 2026

    Abstract In the image fusion field, fusing infrared images (IRIs) and visible images (VIs) excelled is a key area. The differences between IRIs and VIs make it challenging to fuse both types into a high-quality image. Accordingly, efficiently combining the advantages of both images while overcoming their shortcomings is necessary. To handle this challenge, we developed an end-to-end IRI and VI fusion method based on frequency decomposition and enhancement. By applying concepts from frequency domain analysis, we used the layering mechanism to better capture the salient thermal targets from the IRIs and the rich textural information… More >

  • Open Access

    ARTICLE

    LLM-Powered Multimodal Reasoning for Fake News Detection

    Md. Ahsan Habib1, Md. Anwar Hussen Wadud2, M. F. Mridha3,*, Md. Jakir Hossen4,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.070235 - 10 February 2026

    Abstract The problem of fake news detection (FND) is becoming increasingly important in the field of natural language processing (NLP) because of the rapid dissemination of misleading information on the web. Large language models (LLMs) such as GPT-4. Zero excels in natural language understanding tasks but can still struggle to distinguish between fact and fiction, particularly when applied in the wild. However, a key challenge of existing FND methods is that they only consider unimodal data (e.g., images), while more detailed multimodal data (e.g., user behaviour, temporal dynamics) is neglected, and the latter is crucial for… More >

  • Open Access

    ARTICLE

    Mechanical Analysis of Free-Standing Cold-Water Pipe for Ocean Thermal Energy Conversion

    Jing Li1, Bo Ning1,*, Bo Li2, Xuemei Jin1, Dezhi Qiu1, Fenlan Ou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074335 - 06 February 2026

    Abstract As a controllable power generation method requiring no energy storage, Ocean Thermal Energy Conversion (OTEC) technology demonstrates characteristics of abundant reserves, low pollution, and round-the-clock stable operation. The free-standing cold-water pipe (CWP) in the system withstands various complex loads during operation, posing potential failure risks. To reveal the deformation and stress mechanisms of OTEC CWPs, this study first analyzes wave particle velocity and acceleration to determine wave loads at different water depths. Based on the Euler-Bernoulli beam model, a quasi-static load calculation model for OTEC CWPs was established. The governing equations were discretized using the… More >

  • Open Access

    ARTICLE

    MCPSFOA: Multi-Strategy Enhanced Crested Porcupine-Starfish Optimization Algorithm for Global Optimization and Engineering Design

    Hao Chen1, Tong Xu1, Yutian Huang2, Dabo Xin1,*, Changting Zhong1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075792 - 29 January 2026

    Abstract Optimization problems are prevalent in various fields of science and engineering, with several real-world applications characterized by high dimensionality and complex search landscapes. Starfish optimization algorithm (SFOA) is a recently optimizer inspired by swarm intelligence, which is effective for numerical optimization, but it may encounter premature and local convergence for complex optimization problems. To address these challenges, this paper proposes the multi-strategy enhanced crested porcupine-starfish optimization algorithm (MCPSFOA). The core innovation of MCPSFOA lies in employing a hybrid strategy to improve SFOA, which integrates the exploratory mechanisms of SFOA with the diverse search capacity of… More >

Displaying 1-10 on page 1 of 928. Per Page