Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (912)
  • Open Access

    ARTICLE

    A Hybrid Approach to Software Testing Efficiency: Stacked Ensembles and Deep Q-Learning for Test Case Prioritization and Ranking

    Anis Zarrad1, Thomas Armstrong2, Jaber Jemai3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072768 - 12 January 2026

    Abstract Test case prioritization and ranking play a crucial role in software testing by improving fault detection efficiency and ensuring software reliability. While prioritization selects the most relevant test cases for optimal coverage, ranking further refines their execution order to detect critical faults earlier. This study investigates machine learning techniques to enhance both prioritization and ranking, contributing to more effective and efficient testing processes. We first employ advanced feature engineering alongside ensemble models, including Gradient Boosted, Support Vector Machines, Random Forests, and Naive Bayes classifiers to optimize test case prioritization, achieving an accuracy score of 0.98847More >

  • Open Access

    ARTICLE

    Research on UAV–MEC Cooperative Scheduling Algorithms Based on Multi-Agent Deep Reinforcement Learning

    Yonghua Huo1,2, Ying Liu1,*, Anni Jiang3, Yang Yang3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072681 - 12 January 2026

    Abstract With the advent of sixth-generation mobile communications (6G), space–air–ground integrated networks have become mainstream. This paper focuses on collaborative scheduling for mobile edge computing (MEC) under a three-tier heterogeneous architecture composed of mobile devices, unmanned aerial vehicles (UAVs), and macro base stations (BSs). This scenario typically faces fast channel fading, dynamic computational loads, and energy constraints, whereas classical queuing-theoretic or convex-optimization approaches struggle to yield robust solutions in highly dynamic settings. To address this issue, we formulate a multi-agent Markov decision process (MDP) for an air–ground-fused MEC system, unify link selection, bandwidth/power allocation, and task… More >

  • Open Access

    ARTICLE

    CamSimXR: eXtended Reality (XR) Based Pre-Visualization and Simulation for Optimal Placement of Heterogeneous Cameras

    Juhwan Kim1, Gwanghyun Jo2, Dongsik Jo1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072664 - 12 January 2026

    Abstract In recent years, three-dimensional reconstruction technologies that employ multiple cameras have continued to evolve significantly, enabling remote collaboration among users in extended Reality (XR) environments. In addition, methods for deploying multiple cameras for motion capture of users (e.g., performers) are widely used in computer graphics. As the need to minimize and optimize the number of cameras grows to reduce costs, various technologies and research approaches focused on Optimal Camera Placement (OCP) are continually being proposed. However, as most existing studies assume homogeneous camera setups, there is a growing demand for studies on heterogeneous camera setups.… More >

  • Open Access

    ARTICLE

    A Dual-Stream Framework for Landslide Segmentation with Cross-Attention Enhancement and Gated Multimodal Fusion

    Md Minhazul Islam1,2, Yunfei Yin1,2,*, Md Tanvir Islam1,2, Zheng Yuan1,2, Argho Dey1,2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072550 - 12 January 2026

    Abstract Automatic segmentation of landslides from remote sensing imagery is challenging because traditional machine learning and early CNN-based models often fail to generalize across heterogeneous landscapes, where segmentation maps contain sparse and fragmented landslide regions under diverse geographical conditions. To address these issues, we propose a lightweight dual-stream siamese deep learning framework that integrates optical and topographical data fusion with an adaptive decoder, guided multimodal fusion, and deep supervision. The framework is built upon the synergistic combination of cross-attention, gated fusion, and sub-pixel upsampling within a unified dual-stream architecture specifically optimized for landslide segmentation, enabling efficient… More >

  • Open Access

    ARTICLE

    Steel Surface Defect Detection via the Multiscale Edge Enhancement Method

    Yuanyuan Wang1,*, Yemeng Zhu1, Xiuchuan Chen1, Tongtong Yin1, Shiwei Su2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072404 - 12 January 2026

    Abstract To solve the false detection and missed detection problems caused by various types and sizes of defects in the detection of steel surface defects, similar defects and background features, and similarities between different defects, this paper proposes a lightweight detection model named multiscale edge and squeeze-and-excitation attention detection network (MSESE), which is built upon the You Only Look Once version 11 nano (YOLOv11n). To address the difficulty of locating defect edges, we first propose an edge enhancement module (EEM), apply it to the process of multiscale feature extraction, and then propose a multiscale edge enhancement… More >

  • Open Access

    ARTICLE

    DRL-Based Task Scheduling and Trajectory Control for UAV-Assisted MEC Systems

    Sai Xu1,*, Jun Liu1,*, Shengyu Huang1, Zhi Li2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071865 - 12 January 2026

    Abstract In scenarios where ground-based cloud computing infrastructure is unavailable, unmanned aerial vehicles (UAVs) act as mobile edge computing (MEC) servers to provide on-demand computation services for ground terminals. To address the challenge of jointly optimizing task scheduling and UAV trajectory under limited resources and high mobility of UAVs, this paper presents PER-MATD3, a multi-agent deep reinforcement learning algorithm with prioritized experience replay (PER) into the Centralized Training with Decentralized Execution (CTDE) framework. Specifically, PER-MATD3 enables each agent to learn a decentralized policy using only local observations during execution, while leveraging a shared replay buffer with More >

  • Open Access

    ARTICLE

    AquaTree: Deep Reinforcement Learning-Driven Monte Carlo Tree Search for Underwater Image Enhancement

    Chao Li1,3,#, Jianing Wang1,3,#, Caichang Ding2,*, Zhiwei Ye1,3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071242 - 12 January 2026

    Abstract Underwater images frequently suffer from chromatic distortion, blurred details, and low contrast, posing significant challenges for enhancement. This paper introduces AquaTree, a novel underwater image enhancement (UIE) method that reformulates the task as a Markov Decision Process (MDP) through the integration of Monte Carlo Tree Search (MCTS) and deep reinforcement learning (DRL). The framework employs an action space of 25 enhancement operators, strategically grouped for basic attribute adjustment, color component balance, correction, and deblurring. Exploration within MCTS is guided by a dual-branch convolutional network, enabling intelligent sequential operator selection. Our core contributions include: (1) a More >

  • Open Access

    ARTICLE

    Speech Emotion Recognition Based on the Adaptive Acoustic Enhancement and Refined Attention Mechanism

    Jun Li1, Chunyan Liang1,*, Zhiguo Liu1, Fengpei Ge2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071011 - 12 January 2026

    Abstract To enhance speech emotion recognition capability, this study constructs a speech emotion recognition model integrating the adaptive acoustic mixup (AAM) and improved coordinate and shuffle attention (ICASA) methods. The AAM method optimizes data augmentation by combining a sample selection strategy and dynamic interpolation coefficients, thus enabling information fusion of speech data with different emotions at the acoustic level. The ICASA method enhances feature extraction capability through dynamic fusion of the improved coordinate attention (ICA) and shuffle attention (SA) techniques. The ICA technique reduces computational overhead by employing depth-separable convolution and an h-swish activation function and More >

  • Open Access

    ARTICLE

    Beyond Wi-Fi 7: Enhanced Decentralized Wireless Local Area Networks with Federated Reinforcement Learning

    Rashid Ali1,*, Alaa Omran Almagrabi2,3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070224 - 12 January 2026

    Abstract Wi-Fi technology has evolved significantly since its introduction in 1997, advancing to Wi-Fi 6 as the latest standard, with Wi-Fi 7 currently under development. Despite these advancements, integrating machine learning into Wi-Fi networks remains challenging, especially in decentralized environments with multiple access points (mAPs). This paper is a short review that summarizes the potential applications of federated reinforcement learning (FRL) across eight key areas of Wi-Fi functionality, including channel access, link adaptation, beamforming, multi-user transmissions, channel bonding, multi-link operation, spatial reuse, and multi-basic servic set (multi-BSS) coordination. FRL is highlighted as a promising framework for More >

  • Open Access

    ARTICLE

    GPR Image Enhancement and Object Detection-Based Identification for Roadbed Subsurface Defect

    Zhuangqiang Wen1, Min Zhang2, Zhekun Shou3,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071300 - 08 January 2026

    Abstract Roadbed disease detection is essential for maintaining road functionality. Ground penetrating radar (GPR) enables non-destructive detection without drilling. However, current identification often relies on manual inspection, which requires extensive experience, suffers from low efficiency, and is highly subjective. As the results are presented as radar images, image processing methods can be applied for fast and objective identification. Deep learning-based approaches now offer a robust solution for automated roadbed disease detection. This study proposes an enhanced Faster Region-based Convolutional Neural Networks (R-CNN) framework integrating ResNet-50 as the backbone and two-dimensional discrete Fourier spectrum transformation (2D-DFT) for… More >

Displaying 1-10 on page 1 of 912. Per Page