Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ABSTRACT

    Computational Flow Simulations around Circular Cylinders Using a Finite Element Method

    Kazuhiko Kakuda1, Masayuki Sakai1, Shinichiro Miura2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.5, No.4, pp. 199-204, 2008, DOI:10.3970/icces.2008.005.199

    Abstract The applications of a finite element scheme to three-dimensional incompressible viscous fluid flows around circular cylinders are presented. The scheme is based on the Petrov-Galerkin weak formulation with exponential weighting functions. The incompressible Navier-Stokes equations are numerically integrated in time by using a fractional step strategy with second-order accurate Adams-Bashforth scheme for both advection and diffusion terms. Numerical solutions for flow around a circular cylinder are presented. The parallelization and the performance of the present scheme are also checked. More >

  • Open Access

    ABSTRACT

    Three Dimensional Secondary Vortexes in the Wake past a Circular Cylinder Using High Order Scheme

    Tae Soo Kim1, Pa Ul Mun1, Myung Kuk Lee1, Jae Soo Kim1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.2, pp. 65-70, 2009, DOI:10.3970/icces.2009.010.065

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Method of Fundamental Solutions for Scattering Problems of Electromagnetic Waves

    D.L. Young1,2, J.W. Ruan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.2, pp. 223-232, 2005, DOI:10.3970/cmes.2005.007.223

    Abstract The applications of the method of fundamental solutions (MFS) for modeling the scattering of time-harmonic electromagnetic fields, which are governed by vector Helmholtz equations with coupled boundary conditions, are described. Various perfectly electric conductors are considered as the scatterers to investigate the accuracy of the numerical performance of the proposed procedure by comparing with the available analytical solutions. It is also the intention of this study to reveal the characteristics of the algorithms by comparisons with other numerical methods. The model is first validated to the exact solutions of the electromagnetic wave propagation problems for the scatterers of a circular… More >

  • Open Access

    ARTICLE

    Torsional Wave Propagation in the Finitely Pre-Stretched Hollow Bi-Material Compound Circular Cylinder

    Surkay D. Akbarov1,2, Tamer Kepceler1, M. Mert Egilmez1, Ferhat Dikmen1

    CMC-Computers, Materials & Continua, Vol.26, No.2, pp. 91-110, 2011, DOI:10.3970/cmc.2011.026.091

    Abstract This paper studies the torsional wave dispersion in the hollow bi-material compounded cylinder with finite initial strains. The investigations are carried out within the scope of the piecewise homogeneous body model with the use of the three-dimensional linearized theory of elastic waves in initially stressed bodies. The mechanical relations of the materials of the cylinders are described through the harmonic potential. The numerical results on the influence of the initial stretching or compression of the cylinders along the torsional wave propagation direction are presented and discussed More >

  • Open Access

    ARTICLE

    Flexural Wave Dispersion in Bi-material Compound Solid and Hollow Circular Cylinders

    S.D. Akbarov 1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.5, pp. 407-424, 2014, DOI:10.3970/cmes.2014.097.407

    Abstract Flexural wave dispersion in a bi-material solid and hollow circular cylinders is investigated with the use of the three-dimensional linear theory of elastodynamics. It is assumed that on the interface surface of the cylinders the complete contact conditions satisfy. The analytical solution of the corresponding field equations is presented and, using these solutions, the dispersion equations for the cases under consideration are obtained. The dispersion equations are solved numerically and based on these solutions, dispersion curves are constructed for the concrete selected pairs of materials such as Tungsten (inner cylinder material) + Aluminum (outer cylinder material) and Steel (inner cylinder… More >

  • Open Access

    ARTICLE

    Flexural wave dispersion in finitely pre-strained solid and hollow circular cylinders made of compressible materials

    S. D. Akbarov1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.4, pp. 387-421, 2013, DOI:10.3970/cmes.2013.092.387

    Abstract Flexural wave dispersion in finitely pre-stretched (or pre-compressed) solid and hollow, circular cylinders is investigated with the use of the threedimensional linearized theory of elastic waves in initially stressed bodies. It is assumed that the initial strains in the cylinders are homogeneous and correspond to the uniaxial tension, or compression, along their central axes. The elasticity relations of the cylinders’ materials are described by the harmonic potential. The analytical solution of the corresponding field equations is presented and, using these solutions, the dispersion equations for the cases under consideration are obtained. The dispersion equations are solved numerically and based on… More >

  • Open Access

    ARTICLE

    Local Moving Least Square - One-Dimensional IRBFN Technique: Part II- Unsteady Incompressible Viscous Flows

    D. Ngo-Cong1,2, N. Mai-Duy1, W. Karunasena2, T. Tran-Cong1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.3, pp. 311-352, 2012, DOI:10.3970/cmes.2012.083.311

    Abstract In this study, local moving least square - one dimensional integrated radial basis function network (LMLS-1D-IRBFN) method is presented and demonstrated with the solution of time-dependent problems such as Burgers' equation, unsteady flow past a square cylinder in a horizontal channel and unsteady flow past a circular cylinder. The present method makes use of the partition of unity concept to combine the moving least square (MLS) and one-dimensional integrated radial basis function network (1D-IRBFN) techniques in a new approach. This approach offers the same order of accuracy as its global counterpart, the 1D-IRBFN method, while the system matrix is more… More >

  • Open Access

    ARTICLE

    Dispersion Relations of Axisymmetric Wave Propagation in Finite Pre-Stretched Compound Circular Cylinders Made from Highly Elastic Incompressible Materials

    Surkay D. Akbarov1,2,3, Mugan S. Guliev4, Ramazan Tekercioglu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.1, pp. 1-32, 2010, DOI:10.3970/cmes.2010.055.001

    Abstract Dispersion relations of axisymmetric longitudinal wave propagation in a finite pre-strained compound (bi-material) cylinder made from high elastic incompressible materials are investigated within the scope of a piecewise homogeneous body model utilizing three-dimensional linearized theory wave propagation in the initially stressed body. The materials of the inner and outer cylinders are assumed to be neo-Hookean. The numerical results regarding the influence of the initial strains in the inner and outer cylinders on the wave dispersion are presented and discussed. These results are obtained for the case where the material of the inner solid cylinder is stiffer than that of the… More >

  • Open Access

    ARTICLE

    Convectively Unstable Anti-Symmetric Waves in Flows Past Bluff Bodies

    Bhaskar Kumar1, Sanjay Mittal1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.2, pp. 95-122, 2009, DOI:10.3970/cmes.2009.053.095

    Abstract The steady flow past a circular cylinder is investigated. Symmetry conditions are imposed along the centerline of the flow field. The variation of the structure of the recirculation zone with the Reynolds number is studied. The effect of the location of lateral boundary on the flow is analyzed and compared with results from earlier studies. The eddy length varies linearly with Re. Three kinds of solutions, based on eddy structure, are found for different location of the lateral boundary. Global linear stability analysis has been carried out in a translating frame to determine the convective modes for flow past a… More >

  • Open Access

    ARTICLE

    Numerical Simulations of Flows over a Pair of Cylinders at Different Arrangements using the Immersed Boundary Method

    A.R. da Silva1, A. Silveira-Neto2,3, D.A. Rade2,4, R.Francis4, E.A. Santos4

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.3, pp. 285-304, 2009, DOI:10.3970/cmes.2009.050.285

    Abstract In the context of computational fluid dynamics a numerical investigation of incompressible flow around fixed pairs of rigid circular cylinders was carried out. The two-dimensional filtered Navier-Stokes equations with the Smagorinsky sub-grid scale model were solved using a Cartesian non-uniform grid. The immersed Boundary Method with the Virtual Physical Model was used in order to model the presence of two circular cylinders embedded in the flow. The fractional time step method was used to couple pressure and velocity fields. The simulations were carried out for Reynolds number equal to 72,000 for pitch ratio equal to 2 and different arrangements regarding… More >

Displaying 11-20 on page 2 of 23. Per Page