Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,612)
  • Open Access

    ARTICLE

    Determination of Temperature-Dependent Elasto-Plastic Properties of Thin-Film by MD Nanoindentation Simulations and an Inverse GA/FEM Computational Scheme

    D. S. Liu1, C. Y. Tsai1, S. R. Lyu2

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 147-164, 2009, DOI:10.3970/cmc.2009.011.147

    Abstract This study presents a novel numerical method for extracting the tempe -rature-dependent mechanical properties of the gold and aluminum thin-films. In the proposed approach, molecular dynamics (MD) simulations are performed to establish the load-displacement response of the thin substrate nanoindented at temperatures ranging from 300-900 K. A simple but effective procedure involving genetic algorithm (GA) and finite element method (FEM) is implemented to extract the material constants of the gold and aluminum substrates. The material constants are then used to construct the corresponding stress-strain curve, from which the elastic modulus, yield stress and the tangent modulus of the thin film… More >

  • Open Access

    ARTICLE

    Hydroplaning Analysis for Tire Rolling over Water Film with Various Thicknesses Using the LS-DYNA Fluid-Structure Interactive Scheme

    Syh-Tsang Jenq1,2, Yuen-Sheng Chiu2

    CMC-Computers, Materials & Continua, Vol.11, No.1, pp. 33-58, 2009, DOI:10.3970/cmc.2009.011.033

    Abstract Current work studies the transient hydroplaning behavior of 200 kPa inflated pneumatic radial tires with various types of tread patterns. Tires were numerically loaded with a quarter car weight of 4 kN, and then accelerated from rest rolling over a water film with a thickness of 5, 10 and 15 mm on top of a flat pavement. Tire structure is composed of outer rubber tread and inner fiber reinforcing composite layers. The Mooney-Rivlin constitutive law and the classical laminated theory (CLT) were, respectively, used to describe the mechanical behavior of rubber material and composite reinforcing layers. The tire hydroplaning phenomenon… More >

  • Open Access

    ARTICLE

    Collapse Analysis, Defect Sensitivity and Load Paths in Stiffened Shell Composite Structures

    D.W. Kelly1, M.C.W. Lee1, A.C. Orifici2,3, R.S.Thomson3, R. Degenhardt4,5

    CMC-Computers, Materials & Continua, Vol.10, No.2, pp. 163-194, 2009, DOI:10.3970/cmc.2009.010.163

    Abstract An experimental program for collapse of curved stiffened composite shell structures encountered a wide range of initial and deep buckling mode shapes. This paper presents work to determine the significance of the buckling deformations for determining the final collapse loads and to understand the source of the variation. A finite element analysis is applied to predict growth of damage that causes the disbonding of stiffeners and defines a load displacement curve to final collapse. The variability in material properties and geometry is then investigated to identify a range of buckling modes and development of deep postbuckling deformation encountered in the… More >

  • Open Access

    ARTICLE

    Limit Load of Soil-Root Composites

    Yang Pu1, Xiang Zhihai1, Hu Xiasong2, Li Guorong2, Zhu Haili2, Mao XiaoqinCen2, Zhangzhi1,3

    CMC-Computers, Materials & Continua, Vol.10, No.2, pp. 117-138, 2009, DOI:10.3970/cmc.2009.010.117

    Abstract This paper studies the influence of root reinforcement on shallow soil protection by using Finite Element (FE) method. Taking the root-soil composite as a periodic material, the homogenization method is used to construct a Representative Volume Element (RVE) that consists of roots and soil. This RVE is discretized by a two-dimensional (2-D) FE mesh, while special formulation is established so that this model is capable of describing three-dimensional (3-D) deformations when the strain is invariant along the fiber axis. The important effect of debonding on the interface between the fiber and the matrix is also considered by using a special… More >

  • Open Access

    ARTICLE

    Comparison of New Formulations for Martensite Start Temperature of Fe-Mn-Si Shape Memory Alloys Using Geneting Programming and Neural Networks

    CMC-Computers, Materials & Continua, Vol.10, No.1, pp. 65-96, 2009, DOI:10.3970/cmc.2009.010.065

    Abstract This work proposed an alternative formulation for the prediction of martensite start temperature (Ms) of Fe-Mn-Si shape memory alloys (SMAs) depending on the various compositions and heat treatment techniques by using Neural Network (NN) and genetic programming (GP) soft computing techniques. The training and testing patterns of the proposed NN and GP formulations are based on well established experimental results from the literature. The NN and GP based formulation results are compared with experimental results and found to be quite reliable with a very high correlation (R2=0.955 for GEP and 0.999 for NN). More >

  • Open Access

    ARTICLE

    A Displacement Solution to Transverse Shear Loading of Composite Beams by BEM

    E.J. Sapountzakis1, V.G. Mokos2

    CMC-Computers, Materials & Continua, Vol.10, No.1, pp. 1-40, 2009, DOI:10.3970/cmc.2009.010.001

    Abstract In this paper the boundary element method is employed to develop a displacement solution for the general transverse shear loading problem of composite beams of arbitrary constant cross section. The composite beam (thin or thick walled) consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli and are firmly bonded together. The analysis of the beam is accomplished with respect to a coordinate system that has its origin at the centroid of the cross section, while its axes are not necessarily the principal bending ones. The transverse… More >

  • Open Access

    ARTICLE

    Multi-Scale Modelling and Simulation of Textile Reinforced Materials

    G. Haasemann1, M. Kästner1 and V. Ulbricht1

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 131-146, 2006, DOI:10.3970/cmc.2006.003.131

    Abstract Novel textile reinforced composites provide an extremely high adaptability and allow for the development of materials whose features can be adjusted precisely to certain applications. A successful structural and material design process requires an integrated simulation of the material behavior, the estimation of the effective properties which need to be assigned to the macroscopic model and the resulting features of the component. In this context two efficient modelling strategies - the Binary Model (Carter, Cox, and Fleck (1994)) and the Extended Finite Element Method (X-FEM) (Moës, Cloirec, Cartraud, and Remacle (2003)) - are used to model materials which exhibit a… More >

  • Open Access

    ARTICLE

    Nonlinear Dynamical Analysis in Incompressible Transversely Isotropic Nonlinearly Elastic Materials: Cavity Formation and Motion in Solid Spheres

    X.G. Yuan1, R.J. Zhang2

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 119-130, 2006, DOI:10.3970/cmc.2006.003.119

    Abstract In this paper, the problem of cavity formation and motion in an incompressible transversely isotropic nonlinearly elastic solid sphere, which is subjected to a uniform radial tensile dead load on its surface, is examined in the context of nonlinear elastodynamics. The strain energy density associated with the nonlinearly elastic material may be viewed as the generalized forms of some known material models. It is proved that some determinate conditions must be imposed on the form of the strain energy density such that the surface tensile dead load has a finite critical value. Correspondingly, as the surface tensile dead load exceeds… More >

  • Open Access

    ARTICLE

    A First-Principles Computational Framework for Liquid Mineral Systems

    B.B. Karki1, D. Bhattarai1, L. Stixrude2

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 107-118, 2006, DOI:10.3970/cmc.2006.003.107

    Abstract Computer modeling of liquid phase poses tremendous challenge: It requires a relatively large simulation size, long simulation time and accurate interatomic interaction and as such, it produces massive amounts of data. Recent advances in hardware and software have made it possible to accurately simulate the liquid phase. This paper reports the details of methodology used in the context of liquid simulations and subsequent analysis of the output data. For illustration purpose, we consider the results for the liquid phases of two geophysically relevant materials, namely MgO and MgSiO3. The simulations are performed using the parallel first-principles molecular dynamics (FPMD) technique… More >

  • Open Access

    ARTICLE

    Numerical Modelling of Damage Response of Layered Composite Plates

    I. Smojver1, J. Sorić2

    CMC-Computers, Materials & Continua, Vol.3, No.1, pp. 13-24, 2006, DOI:10.3970/cmc.2007.003.013

    Abstract The paper addresses the problem of impact on layered fibre composites. The behaviour of composite laminates under impact loading is dependent not only on the velocity but also on the mass and geometry of the impactor. Using micromechanical Mori-Tanaka approach, mechanical properties of the laminate have been calculated utilizing the material constants of the fibre and matrix. General purpose FEM software ABAQUS has been modified by means of user written subroutines for modelling of composite laminate and rigid impactor. The kinematics of the impact has been simulated using transient dynamic analysis. Employing user defined multi point constraints, delamination zones have… More >

Displaying 3601-3610 on page 361 of 3612. Per Page