Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    Biodegradability of Polyethylene/Hydrolyzed Collagen Blends in Terrestrial and Marine Environmental Conditions

    Monica Puccini*1, Eleonora Stefanelli1, Maurizia Seggiani1, Elena Balestri2, Sandra Vitolo1

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 117-123, 2017, DOI:10.7569/JRM.2017.634138

    Abstract In this study, blends of low-density polyethylene (PE) containing 20 wt% of hydrolyzed collagen (HC) from the leather industry were processed by the film blowing technique. A biodegradation study of these innovative materials was performed by two different biodegradation tests, one in terrestrial environment, the other one under aquatic conditions. Degradation rates were determined for both systems and an environmental degradability parameter was calculated. The results proved the positive influence of hydrolyzed collagen on degradation of polyethylene, but also showed a relatively low biological degradability of PE/HC blends under the applied test conditions. More >

  • Open Access

    ARTICLE

    Knockdown of Collagen Triple Helix Repeat Containing-1 Inhibits the Proliferation and Epithelial-to-Mesenchymal Transition in Renal Cell Carcinoma Cells

    Xue-fei Jin, Hai Li, Shi Zong, Hong-yan Li

    Oncology Research, Vol.24, No.6, pp. 477-485, 2016, DOI:10.3727/096504016X14685034103716

    Abstract Collagen triple helix repeat containing-1 (CTHRC1), a secreted glycoprotein, is frequently upregulated in human cancers. However, the functional role of CTHRC1 in renal cell carcinoma (RCC) remains unclear. Thus, the aim of this study was to explore the role of CTHRC1 in RCC. Our results demonstrated that CTHRC1 was upregulated in RCC tissues and cell lines. Knockdown of CTHRC1 significantly inhibits the proliferation in RCCs. Furthermore, knockdown of CTHRC1 significantly inhibited the epithelial-to-mesenchymal transition (EMT) process in RCCs, as well as suppressed RCC cell migration and invasion. Mechanistically, knockdown of CTHRC1 inhibited the expression of More >

  • Open Access

    ARTICLE

    Thermal Degradation of Type I Collagen from Bones

    M. L. Lambri1,2, E. D. Giordano2,3, P. B. Bozzano4, F. G. Bonifacich2, J. I. Pérez-Landazábal5,6, G. I. Zelada2, D. Gargicevich2, V. Recarte5,6, O. A. Lambri2*

    Journal of Renewable Materials, Vol.4, No.4, pp. 251-257, 2016, DOI:10.7569/JRM.2016.634111

    Abstract The denaturation processes of collagen in the temperature range between 450 K and 670 K are revealed through studies performed on cow rib bones by means of mechanical spectroscopy, differential scanning calorimetry, thermogravimetry, scanning electron microscopy and infrared spectroscopy. The conformational change of the collagen molecules from a triple helix structure to a random coil was found at around 510 K. It was determined that the transformation is developed through the viscous movement of fibrils with an activation energy of (127 ± 8) kJ/mol. The second stage of massive bulk deterioration of the collagen was More >

  • Open Access

    ARTICLE

    3D Bio-Plotted Composite Scaffold Made of Collagen Treated Hydroxyapatite-Tricalciumphosphate for Rabbit Tibia Bone Regeneration

    Pranav S. Sapkal1*, Abhaykumar M. Kuthe1, Divya Ganapathy2, Shantanu C. Mathankar3, Sudhanshu Kuthe4

    Molecular & Cellular Biomechanics, Vol.13, No.2, pp. 115-136, 2016, DOI:10.3970/mcb.2016.013.131

    Abstract Biphasic calcium phosphate scaffolds with 20/80 HA/TCP ratio were fabricated using the 3D-Bioplotting system to heal critical size defects in rabbit tibia bone. Four different architectures were printed in a layer by layer fashion with lay down patterns viz. (a) 0°– 90°, (b) 0°– 45°– 90°– 135°, (c) 0°–108°– 216° and (d) 0°– 60°– 120°. After high-temperature sintering scaffolds were coated with collagen and were further characterized by (FTIR) Fourier Transform Infrared Spectroscopy, (SEM) Scanning Electron Microscopy, (XRD) X-Ray diffraction, Porosity analysis and Mechanical testing. Scaffold samples were tested for its ability to induce cytotoxicity… More >

  • Open Access

    ARTICLE

    Multiscale Modeling of Collagen Fibril in Bone at Various Crosslink Densities: An Insight into Its Deformation Mechanisms

    S.M. Pradhan1, K.S.Katti1, D.R. Katti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 181-201, 2014, DOI:10.3970/cmes.2014.098.181

    Abstract Multiscale modeling of collagen fibril is carried out by incorporating the material properties of collagen obtained from steered molecular dynamics into the finite element model of collagen fibril with inclusion of crosslinks. The results indicate that the nonbonded interactions between collagen and mineral contribute to the significant enhancement of the elastic modulus of collagen fibril at all the crosslink densities in both the low strain and high strain regimes. The crosslinks are found to play an important role in the mechanical response of collagen fibril, the enhancement in elastic modulus ranging from 5-11% for various More >

  • Open Access

    ARTICLE

    The Effect of Collagenase on the Critical Buckling Pressure of Arteries*

    Ricky Martinez, Hai-Chao Han

    Molecular & Cellular Biomechanics, Vol.9, No.1, pp. 55-76, 2012, DOI:10.3970/mcb.2012.009.055

    Abstract The stability of arteries is essential to normal arterial functions and loss of stability can lead to arterial tortuosity and kinking. Collagen is a main extracellular matrix component that modulates the mechanical properties of arteries and collagen degradation at pathological conditions weakens the mechanical strength of arteries. However, the effects of collagen degradation on the mechanical stability of arteries are unclear. The objective of this study was to investigate the effects of collagen degradation on the critical buckling pressure of arteries. Arterial specimens were subjected to pressurized inflation testing and fitted with nonlinear thick-walled cylindrical… More >

  • Open Access

    ARTICLE

    Effect of Mechanical Pressure on the Thickness and Collagen Synthesis of Mandibular Cartilage and the Contributions of G Proteins

    Min Zhang, Fa-Ming Chen, Yong-Jin Chen∗,‡, Shun Wu, Xin Lv, Rui-Ni Zhao

    Molecular & Cellular Biomechanics, Vol.8, No.1, pp. 43-60, 2011, DOI:10.3970/mcb.2011.008.043

    Abstract To investigate the role of mechanical pressure on cartilage thickness and type II collagen synthesis, and the role of G protein in that process, in vitro organ culture of mandibular cartilage was adopted in this study. A hydraulic pressure-controlled cellular strain unit was used to apply hydrostatic pressurization to explant cultures. The explants were compressed by different pressure values (0 kPa, 100 kPa, and 300 kPa) after pretreatment with or without a selective and direct antagonist (NF023) for the G proteins. After 4, 8 and 12 h of cell culture under each pressure condition, histological… More >

  • Open Access

    ARTICLE

    An economic evaluation of surgery versus collagen injection for the treatment of female stress urinary incontinence

    Mark Oremus1, Jean-Eric Tarride2

    Canadian Journal of Urology, Vol.17, No.2, pp. 5087-5093, 2010

    Abstract Objective: To use data from a randomized controlled trial and update an earlier economic evaluation of surgery versus collagen injection for the treatment of female stress urinary incontinence (SUI).
    Materials and methods: A decision tree model was developed using probabilities of success and complications from a randomized controlled trial. Resource use and cost data were taken from the earlier economic evaluation. The primary outcome was treatment success, which was defined as a negative 24 hour PAD test given 1 year post-treatment. The evaluation was conducted from the 'healthcare system' perspective and separate analyses were undertaken for Ontario… More >

  • Open Access

    ARTICLE

    Dynamic Effects on the Formation and Rupture of Aneurysms

    J.S. Ren*

    Molecular & Cellular Biomechanics, Vol.7, No.4, pp. 213-224, 2010, DOI:10.3970/mcb.2010.007.213

    Abstract Dynamic analysis of an axially stretched arterial wall with collagen fibers distributed in two preferred directions under a suddenly applied constant internal pressure along with the possibility of the formation and rupture of aneurysm are examined within the framework of nonlinear dynamics. A two layer tube model with the fiber-reinforced composite-based incompressible anisotropic hyper-elastic material is employed to model the mechanical behavior of the arterial wall. The maximum amplitudes and the phase diagrams are given by numerical computation of the differential relation. It is shown that the arterial wall undergoes nonlinear periodic oscillation and no More >

  • Open Access

    ARTICLE

    In vitro Response of the Bone Marrow-Derived Mesenchymal Stem Cells Seeded in a Type-I Collagen-Glycosaminoglycan Scaffold for Skin Wound Repair Under the Mechanical Loading Condition

    Masanori Kobayashi, Myron Spector

    Molecular & Cellular Biomechanics, Vol.6, No.4, pp. 217-228, 2009, DOI:10.3970/mcb.2009.006.217

    Abstract In order to achieve successful wound repair by regenerative tissue engineering using mesenchymal stem cells (MSCs), it is important to understand the response of stem cells in the scaffold matrix to mechanical stress.
    To investigate the clinical effects of mechanical stress on the behavior of cells in scaffolds, bone marrow-derived mesenchymal stem cells (MSCs) were grown on a type-I collagen-glycosaminoglycan (GAG) scaffold matrix for one week under cyclic stretching loading conditions.
    The porous collagen-GAG scaffold matrix for skin wound repair was prepared, the harvested canine MSCs were seeded on the scaffold, and cultured under… More >

Displaying 21-30 on page 3 of 38. Per Page