Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (297)
  • Open Access

    ARTICLE

    Intelligent Concrete Defect Identification Using an Attention-Enhanced VGG16-U-Net

    Caiping Huang*, Hui Li, Zihang Yu

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1287-1304, 2025, DOI:10.32604/sdhm.2025.065930 - 05 September 2025

    Abstract Semantic segmentation of concrete bridge defect images frequently encounters challenges due to insufficient precision and the limited computational capabilities of mobile devices, thereby considerably affecting the reliability of bridge defect monitoring and health assessment. To tackle these issues, a concrete defects dataset (including spalling, crack, and exposed steel rebar) was curated and multiple semantic segmentation models were developed. In these models, a deep convolutional network or a lightweight convolutional network were employed as the backbone feature extraction networks, with different loss functions configured and various attention mechanism modules introduced for conducting multi-angle comparative research. The… More >

  • Open Access

    ARTICLE

    Investigation on Shear Performance of Concrete T-Beam Bridge Strengthened Using UHPC

    Zhiyong Wan1, Guozhang Luo2, Pailin Fang2, Menghui Ji2, Zhizhao Ou3, Shaohua He3,*

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1327-1341, 2025, DOI:10.32604/sdhm.2025.065177 - 05 September 2025

    Abstract This investigation examines the shear performance of concrete T-beams reinforced with thin layers of ultra-high performance concrete (UHPC) through an approach that integrates experimental evaluation, numerical simulation, and practical project verification. The research is based on a real bridge, and in accordance with the similarity principle, three reduced-scale T-beams with varying UHPC thicknesses were fabricated and tested to examine their failure modes and shear behaviors. A finite element model was created to enhance understanding of how UHPC reinforces these structures, while also considering the effects of material strength and arrangement. In addition to the laboratory… More >

  • Open Access

    ARTICLE

    Flexural Performance of UHPC-Reinforced Concrete T-Beams: Experimental and Numerical Investigations

    Guangqing Xiao1, Xilong Chen1, Lihai Xu1, Feilong Kuang2, Shaohua He2,*

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1167-1181, 2025, DOI:10.32604/sdhm.2025.064450 - 05 September 2025

    Abstract This study investigates the flexural performance of ultra-high performance concrete (UHPC) in reinforced concrete T-beams, focusing on the effects of interfacial treatments. Three concrete T-beam specimens were fabricated and tested: a control beam (RC-T), a UHPC-reinforced beam with a chiseled interface (UN-C-50F), and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars (UN-CS-50F). The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer, with the UN-CS-50F exhibiting the highest flexural resistance. The cracking load and… More >

  • Open Access

    ARTICLE

    Calibration and Reliability Analysis of Eccentric Compressive Concrete Column with High Strength Rebars

    Baojun Qin1,2, Hong Jiang1,2,3, Wei Zhang4, Xiang Liu4,*

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1203-1220, 2025, DOI:10.32604/sdhm.2025.063813 - 05 September 2025

    Abstract The utilization of high-strength steel bars (HSSB) within concrete structures demonstrates significant advantages in material conservation and mechanical performance enhancement. Nevertheless, existing design codes exhibit limitations in addressing the distinct statistical characteristics of HSSB, particularly regarding strength design parameters. For instance, GB50010-2010 fails to specify design strength values for reinforcement exceeding 600 MPa, creating technical barriers for advancing HSSB implementation. This study systematically investigates the reliability of eccentric compression concrete columns reinforced with 600 MPa-grade HSSB through high-order moment method analysis. Material partial factors were calibrated against target reliability indices prescribed by GB50068-2018, incorporating critical More >

  • Open Access

    ARTICLE

    Energy Dissipation and Stiffness Assessment: A Study on RC Frame Joints Reinforced with UHPSFRC

    Trung-Hieu Tran*

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 869-886, 2025, DOI:10.32604/sdhm.2025.064902 - 30 June 2025

    Abstract The design principles for conventional reinforced concrete structures have gradually transitioned to seismic-resistant design since the 1970s. However, until recently, the implementation of strength capacity and ductility design has not been rigorously enforced in many developing countries that are prone to seismic risks. Numerous studies have evaluated the effectiveness of joint behavior based on both ductile and non-ductile designs under cyclic loading. Previous research has demonstrated that enhancing joint regions with Ultra-High Performance Steel Fiber Reinforced Concrete (UHPSFRC) significantly improves the seismic resistance of structural components. This paper presents a detailed analysis of the considerable… More >

  • Open Access

    ARTICLE

    Study on the Dynamic Mechanical Damage Behavior of Concrete Based on the Phase-Field Model

    Zhishui Sheng1, Hong Jiang1, Gang Liu2, Fulai Zhang3, Wei Zhang3,*

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 531-548, 2025, DOI:10.32604/sdhm.2024.059662 - 03 April 2025

    Abstract Concrete materials are employed extensively in a variety of large-scale structures due to their economic viability and superior mechanical properties. During the service life of concrete structures, they are inevitably subjected to damage from impact loading from natural disasters, such as earthquakes and storms. In recent years, the phase-field model has demonstrated exceptional capability in predicting the stochastic initiation, propagation, and bifurcation of cracks in materials. This study employs a phase-field model to focus on the rate dependency and failure response of concrete under impact deformation. A viscosity coefficient is introduced within the phase-field model… More >

  • Open Access

    REVIEW

    Seismic Behavior of Squat Reinforced Concrete Shear Walls: A State-of-the-Art Review

    Ahed Habib1,*, Zaid A. Al-Sadoon2, Murat Saatcioglu3, Ausamah Al Houri4, Mohamed Maalej2, Salah Al-Toubat2, Mazen Shrif2

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 417-439, 2025, DOI:10.32604/sdhm.2025.059524 - 03 April 2025

    Abstract Squat reinforced concrete (RC) shear walls are essential structural elements in low-rise buildings, valued for their high strength and stiffness. However, research on their seismic behavior remains limited, as most studies focus on tall, slender walls, which exhibit distinct failure mechanisms and deformation characteristics. This study addresses this gap by conducting an extensive review of existing research on the seismic performance of squat RC shear walls. Experimental studies, analytical models, and numerical simulations are examined to provide insights into key factors affecting wall behavior during seismic events, including material properties, wall geometry, reinforcement detailing, and More >

  • Open Access

    ARTICLE

    Study on the Mechanical Performance of Wet Concrete Joints in Large-Span Composite Steel-Concrete Cable-Stayed Bridges

    Yang Wang1, Zhe Wu2,*, Kaixing Zhang3, Youzhi Wang2,*

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 613-642, 2025, DOI:10.32604/sdhm.2024.058451 - 03 April 2025

    Abstract A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads, but stress concentration in wet joints can lead to cracking. In-situ tests were conducted on key sections of steel-concrete composite cable-stayed bridges to analyze the stress-strain evolution of wet joints under environmental factors, constraints, and complex construction processes. The coordinated working performance of the bridge decks was also analyzed. The results indicate that temperature is the key factor affecting the stresses and strains in wet joint concrete. Approximately 7 days after casting the wet joint concrete, the… More >

  • Open Access

    ARTICLE

    Optimizing Computed Tomography Processing Parameters for Accurate Detection of Internal Defects in Reinforced Concrete

    Yueshun Chen1,2,*, Yupeng Zhou1, Cao Yin3

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 575-592, 2025, DOI:10.32604/sdhm.2024.057005 - 03 April 2025

    Abstract Computed tomography (CT) can inspect the internal structure of concrete with high resolution, but improving the accuracy of measurements remains a key challenge due to the reliance on complex image processing and significant manual intervention. This study aims to optimize CT scanning parameters to enhance the accuracy of measuring crack widths and rebar volumes in reinforced concrete. Nine sets of specimens, each with varying rebar diameters and concrete cover thicknesses, were scanned before and after corrosion using an Optima CT scanner, followed by three-dimensional reconstructions using Avizo software. The effects of threshold values and “Erosion” More >

  • Open Access

    ARTICLE

    Experimental and Numerical Study of Bonding Capacity of Interface between Ultra-High Performance Concrete and Steel Tube

    Ruikun Xu1, Jiu Li1, Wenjie Li1, Wei Zhang2,*

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 285-305, 2025, DOI:10.32604/sdhm.2024.057513 - 15 January 2025

    Abstract This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete (UHPC) and steel tubes through push-out tests. This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics. The results show that as the enhancement of the steel tube wall thickness, the ultimate bond strength at the interface improves significantly, whereas the initial bond strength exhibits only slight variations. The influence of steel fiber volumetric ratio presents a nonlinear trend, with initial bond strength decreasing at low fiber content and increasing More >

Displaying 31-40 on page 4 of 297. Per Page