Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (136)
  • Open Access

    ABSTRACT

    Physiological Cost Optimization for Bipedal Modeling with Optimal Controller Design

    A. M. Mughal1, K. Iqbal2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.4, pp. 215-220, 2008, DOI:10.3970/icces.2008.006.215

    Abstract Human voluntary movements are complex physical phenomenon and there are several physiological factors that control the movement and transient response, steady state position, speed of motion and other characteristics. Many experimentalists described variety of variables important for human balance and movement such as center of mass, center of pressure, ground reaction forces etc. In this study, we discuss a bipedal model for biomechanical sit to stand movement with optimal controller design. The cost optimization for gain scheduling is based upon physiological variables of center of mass, head position, and ground reaction forces. Our simulation results shows that movement profiles improve… More >

  • Open Access

    ARTICLE

    Design of Smith Predictor Based Fractional Controller for Higher Order Time Delay Process

    P. R. Hemavathy1,*, Y. Mohamed Shuaib2, S. K. Lakshmanaprabu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.3, pp. 481-498, 2019, DOI:10.32604/cmes.2019.04731

    Abstract Normally all real world process in a process industry will have time delay. For those processes with time delays, obtaining satisfactory closed loop performances becomes very difficult. In this work, three interacting cylindrical tank process is considered for study and the objective of the work is to compensate for time delays using smith predictor structure and to maintain the level in the third tank. Input/Output data is generated for the three interacting tank process. It is approximated as Integer First Order Plus Dead Time system (IFOPDT) and Fractional First Order Plus Dead Time system (FFOPDT). Smith predictor based fractional order… More >

  • Open Access

    ARTICLE

    Kautz Function Based Continuous-Time Model Predictive Controller for Load Frequency Control in a Multi-Area Power System

    A. Parassuram1,*, P. Somasundaram1

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.2, pp. 169-187, 2018, DOI:10.31614/cmes.2018.01720

    Abstract A continuous-time Model Predictive Controller was proposed using Kautz function in order to improve the performance of Load Frequency Control (LFC). A dynamic model of an interconnected power system was used for Model Predictive Controller (MPC) design. MPC predicts the future trajectory of the dynamic model by calculating the optimal closed loop feedback gain matrix. In this paper, the optimal closed loop feedback gain matrix was calculated using Kautz function. Being an Orthonormal Basis Function (OBF), Kautz function has an advantage of solving complex pole-based nonlinear system. Genetic Algorithm (GA) was applied to optimally tune the Kautz function-based MPC. A… More >

  • Open Access

    ARTICLE

    A Compensation Controller Based on a Nonlinear Wavelet Neural Network for Continuous Material Processing Operations

    Chen Shen1,*, Youping Chen1, Bing Chen1, Jingming Xie1

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 379-397, 2019, DOI:10.32604/cmc.2019.04883

    Abstract Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed. As such, the processing parameters require robust real-time adjustment appropriate to the conditions of a nonlinear system. This paper addresses this issue by presenting a hybrid feedforward-feedback nonlinear model predictive controller for continuous material processing operations. The adaptive feedback control strategy of the controller augments the standard feedforward control to ensure improved robustness and compensation for environmental disturbances and/or parameter uncertainties. Thus, the controller can reduce the need for manual adjustments. The controller… More >

  • Open Access

    ARTICLE

    Designing and Optimization of Fuzzy Sliding Mode Controller for Nonlinear Systems

    Zhe Sun1, Yunrui Bi2, Songle Chen1, Bing Hu1, Feng Xiang3, Yawen Ling1, Zhixin Sun1, ∗

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 119-128, 2019, DOI:10.32604/cmc.2019.05274

    Abstract For enhancing the control effectiveness, we firstly design a fuzzy logic based sliding mode controller (FSMC) for nonlinear crane systems. On basis of overhead crane dynamic characteristic, the sliding mode function with regard to trolley position and payload angle. Additionally, in order to eliminate the chattering problem of sliding mode control, the fuzzy logic theory is adopted to soften the control performance. Moreover, aiming at the FSMC parameter setting problem, a DE algorithm based optimization scheme is proposed for enhancing the control performance. Finally, by implementing the computer simulation, the DE based FSMC can effectively tackle the overhead crane sway… More >

  • Open Access

    ARTICLE

    A Bio-Inspired Global Finite Time Tracking Control of Four-Rotor Test Bench System

    Rooh ul Amin1, Irum Inayat2, Li Aijun1, Shahaboddin Shamshirband3,4,*, Timon Rabczuk5

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 365-388, 2018, DOI:10.32604/cmc.2018.03757

    Abstract A bio-inspired global finite time control using global fast-terminal sliding mode controller and radial basis function network is presented in this article, to address the attitude tracking control problem of the three degree-of-freedom four-rotor hover system. The proposed controller provides convergence of system states in a pre-determined finite time and estimates the unmodeled dynamics of the four-rotor system. Dynamic model of the four-rotor system is derived with Newton’s force equations. The unknown dynamics of four-rotor systems are estimated using Radial basis function. The bio-inspired global fast terminal sliding mode controller is proposed to provide chattering free finite time error convergence… More >

Displaying 131-140 on page 14 of 136. Per Page