Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (171)
  • Open Access

    ARTICLE

    Feature Fusion-Based Deep Learning Network to Recognize Table Tennis Actions

    Chih-Ta Yen1,*, Tz-Yun Chen2, Un-Hung Chen3, Guo-Chang Wang3, Zong-Xian Chen3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 83-99, 2023, DOI:10.32604/cmc.2023.032739 - 22 September 2022

    Abstract A system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study. The wearable device consisted of a six-axis sensor, Raspberry Pi 3, and a power bank. Multiple kernel sizes were used in convolutional neural network (CNN) to evaluate their performance for extracting features. Moreover, a multiscale CNN with two kernel sizes was used to perform feature fusion at different scales in a concatenated manner. The CNN achieved recognition of the four table tennis strokes. Experimental data were obtained from 20 research participants who wore sensors More >

  • Open Access

    ARTICLE

    Detection of Diabetic Retinopathy from Retinal Images Using DenseNet Models

    R. Nandakumar1, P. Saranya2,*, Vijayakumar Ponnusamy3, Subhashree Hazra2, Antara Gupta2

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 279-292, 2023, DOI:10.32604/csse.2023.028703 - 16 August 2022

    Abstract A prevalent diabetic complication is Diabetic Retinopathy (DR), which can damage the retina’s veins, leading to a severe loss of vision. If treated in the early stage, it can help to prevent vision loss. But since its diagnosis takes time and there is a shortage of ophthalmologists, patients suffer vision loss even before diagnosis. Hence, early detection of DR is the necessity of the time. The primary purpose of the work is to apply the data fusion/feature fusion technique, which combines more than one relevant feature to predict diabetic retinopathy at an early stage with… More >

  • Open Access

    ARTICLE

    Efficient Grad-Cam-Based Model for COVID-19 Classification and Detection

    Saleh Albahli1,*, Ghulam Nabi Ahmad Hassan Yar2,3

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2743-2757, 2023, DOI:10.32604/csse.2023.024463 - 01 August 2022

    Abstract Corona Virus (COVID-19) is a novel virus that crossed an animal-human barrier and emerged in Wuhan, China. Until now it has affected more than 119 million people. Detection of COVID-19 is a critical task and due to a large number of patients, a shortage of doctors has occurred for its detection. In this paper, a model has been suggested that not only detects the COVID-19 using X-ray and CT-Scan images but also shows the affected areas. Three classes have been defined; COVID-19, normal, and Pneumonia for X-ray images. For CT-Scan images, 2 classes have been… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning-Based Adaptive Multiple Access Schemes Underwater Wireless Networks

    D. Anitha1,*, R. A. Karthika2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2463-2477, 2023, DOI:10.32604/iasc.2023.023361 - 19 July 2022

    Abstract Achieving sound communication systems in Under Water Acoustic (UWA) environment remains challenging for researchers. The communication scheme is complex since these acoustic channels exhibit uneven characteristics such as long propagation delay and irregular Doppler shifts. The development of machine and deep learning algorithms has reduced the burden of achieving reliable and good communication schemes in the underwater acoustic environment. This paper proposes a novel intelligent selection method between the different modulation schemes such as Code Division Multiple Access(CDMA), Time Division Multiple Access(TDMA), and Orthogonal Frequency Division Multiplexing(OFDM) techniques using the hybrid combination of the convolutional More >

  • Open Access

    ARTICLE

    Histogram Matched Chest X-Rays Based Tuberculosis Detection Using CNN

    Joe Louis Paul Ignatius1,*, Sasirekha Selvakumar1, Kavin Gabriel Joe Louis Paul2, Aadhithya B. Kailash1, S. Keertivaas1, S. A. J. Akarvin Raja Prajan1

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 81-97, 2023, DOI:10.32604/csse.2023.025195 - 01 June 2022

    Abstract Tuberculosis (TB) is a severe infection that mostly affects the lungs and kills millions of people’s lives every year. Tuberculosis can be diagnosed using chest X-rays (CXR) and data-driven deep learning (DL) approaches. Because of its better automated feature extraction capability, convolutional neural networks (CNNs) trained on natural images are particularly effective in image categorization. A combination of 3001 normal and 3001 TB CXR images was gathered for this study from different accessible public datasets. Ten different deep CNNs (Resnet50, Resnet101, Resnet152, InceptionV3, VGG16, VGG19, DenseNet121, DenseNet169, DenseNet201, MobileNet) are trained and tested for identifying… More >

  • Open Access

    ARTICLE

    Modeling & Evaluating the Performance of Convolutional Neural Networks for Classifying Steel Surface Defects

    Nadeem Jabbar Chaudhry1,*, M. Bilal Khan2, M. Javaid Iqbal1, Siddiqui Muhammad Yasir3

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 245-259, 2022, DOI:10.32604/jai.2022.038875 - 25 May 2023

    Abstract Recently, outstanding identification rates in image classification tasks were achieved by convolutional neural networks (CNNs). to use such skills, selective CNNs trained on a dataset of well-known images of metal surface defects captured with an RGB camera. Defects must be detected early to take timely corrective action due to production concerns. For image classification up till now, a model-based method has been utilized, which indicated the predicted reflection characteristics of surface defects in comparison to flaw-free surfaces. The problem of detecting steel surface defects has grown in importance as a result of the vast range… More >

  • Open Access

    ARTICLE

    Apex Frame Spotting Using Attention Networks for Micro-Expression Recognition System

    Ng Lai Yee1, Mohd Asyraf Zulkifley2,*, Adhi Harmoko Saputro3, Siti Raihanah Abdani4

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5331-5348, 2022, DOI:10.32604/cmc.2022.028801 - 28 July 2022

    Abstract Micro-expression is manifested through subtle and brief facial movements that relay the genuine person’s hidden emotion. In a sequence of videos, there is a frame that captures the maximum facial differences, which is called the apex frame. Therefore, apex frame spotting is a crucial sub-module in a micro-expression recognition system. However, this spotting task is very challenging due to the characteristics of micro-expression that occurs in a short duration with low-intensity muscle movements. Moreover, most of the existing automated works face difficulties in differentiating micro-expressions from other facial movements. Therefore, this paper presents a deep… More >

  • Open Access

    REVIEW

    Advances in Hyperspectral Image Classification Based on Convolutional Neural Networks: A Review

    Somenath Bera1, Vimal K. Shrivastava2, Suresh Chandra Satapathy3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.2, pp. 219-250, 2022, DOI:10.32604/cmes.2022.020601 - 21 July 2022

    Abstract Hyperspectral image (HSI) classification has been one of the most important tasks in the remote sensing community over the last few decades. Due to the presence of highly correlated bands and limited training samples in HSI, discriminative feature extraction was challenging for traditional machine learning methods. Recently, deep learning based methods have been recognized as powerful feature extraction tool and have drawn a significant amount of attention in HSI classification. Among various deep learning models, convolutional neural networks (CNNs) have shown huge success and offered great potential to yield high performance in HSI classification. Motivated… More >

  • Open Access

    ARTICLE

    Convolutional Neural Networks Based Video Reconstruction and Computation in Digital Twins

    M. Kavitha1, B. Sankara Babu2, B. Sumathy3, T. Jackulin4, N. Ramkumar5, A. Manimaran6, Ranjan Walia7, S. Neelakandan8,*

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1571-1586, 2022, DOI:10.32604/iasc.2022.026385 - 25 May 2022

    Abstract With the advancement of communication and computing technologies, multimedia technologies involving video and image applications have become an important part of the information society and have become inextricably linked to people's daily productivity and lives. Simultaneously, there is a growing interest in super-resolution (SR) video reconstruction techniques. At the moment, the design of digital twins in video computing and video reconstruction is based on a number of difficult issues. Although there are several SR reconstruction techniques available in the literature, most of the works have not considered the spatio-temporal relationship between the video frames. With… More >

  • Open Access

    ARTICLE

    Automatic Localization and Segmentation of Vertebrae for Cobb Estimation and Curvature Deformity

    Joddat Fatima1,*, Amina Jameel2, Muhammad Usman Akram3, Adeel Muzaffar Syed1, Malaika Mushtaq3

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1489-1504, 2022, DOI:10.32604/iasc.2022.025935 - 25 May 2022

    Abstract The long twisted fragile tube, termed as spinal cord, can be named as the second vital organ of Central Nervous System (CNS), after brain. In human anatomy, all crucial life activities are controlled by CNS. The spinal cord does not only control the flow of information from the brain to rest of the body, but also takes charge of our reflexes control and the mobility of body. It keeps the body upright and acts as the main support for the flesh and bones. Spine deformity can occur by birth, due to aging, injury or spine… More >

Displaying 91-100 on page 10 of 171. Per Page