Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries

    P. Jhunjhunwala∗,†, P.M. Padole∗,‡, S.B. Thombre∗,§

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 37-47, 2015, DOI:10.3970/mcb.2015.012.037

    Abstract CFD analysis plays an important role in the area of analysis of blood flow as in-vivo measurements of blood flow is costly and easily not accessible. This paper presents simulation of blood flow in healthy and stenosed coronary artery 2- D models. The simulation was done considering non-Newtonian behavior of blood and pulsatile nature of blood flow which is close to physical scenario. Pressure distribution, velocity distribution and wall shear were examined to understand their effect on Atherosclerosis. More >

  • Open Access

    ARTICLE

    IVUS-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment

    Molecular & Cellular Biomechanics, Vol.9, No.1, pp. 77-94, 2012, DOI:10.3970/mcb.2012.009.077

    Abstract Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better plaque assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. A framework is proposed to combine intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling with fluid-structure interactions and anisotropic material properties to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. Impact of pre-shrink-stretch process, vessel curvature and high blood pressure on stress, strain,… More >

  • Open Access

    ARTICLE

    Influence of non-Newtonian Properties of Blood on the Wall Shear Stress in Human Atherosclerotic Right Coronary Arteries

    Biyue Liu, Dalin Tang

    Molecular & Cellular Biomechanics, Vol.8, No.1, pp. 73-90, 2011, DOI:10.3970/mcb.2011.008.073

    Abstract The objective of this work is to investigate the effect of non-Newtonian properties of blood on the wall shear stress (WSS) in atherosclerotic coronary arteries using both Newtonian and non-Newtonian models. Numerical simulations were performed to examine how the spatial and temporal WSS distributions are influenced by the stenosis size, blood viscosity, and flow rate. The computational results demonstrated that blood viscosity properties had considerable effect on the magnitude of the WSS, especially where disturbed flow was observed. The WSS distribution is highly non-uniform both temporally and spatially, especially in the stenotic region. The maximum WSS occurred at the proximal… More >

  • Open Access

    ARTICLE

    Influence of Arterial Wall Compliance on the Pressure Drop across Coronary Artery Stenoses under Hyperemic Flow Condition

    Bhaskar Chandra Konala, Ashish Das, Rupak K Banerjee∗,†

    Molecular & Cellular Biomechanics, Vol.8, No.1, pp. 1-20, 2011, DOI:10.3970/mcb.2011.008.001

    Abstract Hemodynamic endpoints such as flow and pressure drop are often measured during angioplasty procedures to determine the functional severity of a coronary artery stenosis. There is a lack of knowledge regarding the influence of compliance of the arterial wall-stenosis on the pressure drop under hyperemic flows across coronary lesions. This study evaluates the influence in flow and pressure drop caused by variation in arterial-stenosis compliance for a wide range of stenosis severities. The flow and pressure drop were evaluated for three different severities of stenosis and tested for limiting scenarios of compliant models. The Mooney-Rivlin model defined the non-linear material… More >

  • Open Access

    ARTICLE

    Computer Simulations of Atherosclerotic Plaque Growth in Coronary Arteries

    Biyue Liu, Dalin Tang

    Molecular & Cellular Biomechanics, Vol.7, No.4, pp. 193-202, 2010, DOI:10.3970/mcb.2010.007.193

    Abstract A three dimensional mathematical model with a linear plaque growth function was developed to investigate the geometrical adaptation of atherosclerotic plaques in coronary arteries and study the influences of flow wall shear stress (WSS), blood viscosity and the inlet flow rate on the growth of atherosclerotic plaques using computational plaque growth simulations. The simulation results indicated that the plaque wall thickness at the neck of the stenosis increased at a decreasing rate in the atherosclerosis progression. The simulation results also showed a strong dependence of the plaque wall thickness increase on the blood viscosity and the inlet flow rate. The… More >

  • Open Access

    ARTICLE

    Cyclic Bending Contributes to High Stress in a Human Coronary Atherosclerotic Plaque and Rupture Risk: In Vitro Experimental Modeling and Ex Vivo MRI-Based Computational Modeling Approach

    Chun Yang∗,†, Dalin Tang∗,‡, Shunichi Kobayashi§, Jie Zheng, Pamela K. Woodard§, Zhongzhao Teng*, Richard Bach||, David N. Ku∗∗

    Molecular & Cellular Biomechanics, Vol.5, No.4, pp. 259-274, 2008, DOI:10.3970/mcb.2008.005.259

    Abstract Many acute cardiovascular syndromes such as heart attack and stroke are caused by atherosclerotic plaque ruptures which often happen without warning. MRI-based models with fluid-structure interactions (FSI) have been introduced to perform flow and stress/strain analysis for atherosclerotic plaques and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. In this paper, cyclic bending was added to 3D FSI coronary plaque models for more accurate mechanical predictions. Curvature variation was prescribed using the data of a human left anterior descending (LAD) coronary artery. Five computational models were constructed based on ex vivo MRI human coronary plaque data to… More >

  • Open Access

    ARTICLE

    The Study of the Graft Hemodynamics with Different Instant Patency in Coronary Artery Bypassing Grafting

    Zhou Zhao1, Boyan Mao2, Youjun Liu2, Haisheng Yang2, Yu Chen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 229-245, 2018, DOI: 10.31614/cmes.2018.04192

    Abstract In coronary artery bypass grafting (CABG), graft’s poor instant patency may lead to an abnormal hemodynamic environment in anastomosis, which could further cause graft failure after the surgery. This paper investigates the graft hemodynamics with different instant patency, and explores its effect on graft postoperative efficiency. Six CABG 0D/3D coupling multi-scale models which used left internal mammary artery (LIMA) and saphenous vein (SVG) as grafts were constructed. Different types of grafts were examined in the models, including normal grafts, grafts with competitive flow and grafts with anastomotic stenosis. Simulation results indicated that comparing with SVG grafts, there was a greater… More >

  • Open Access

    ARTICLE

    Hemodynamics of Enhanced External Counterpulsation with Different Coronary Stenosis

    Sihan Chen1, Bao Li1, Haisheng Yang1, Jianhang Du2, Xiaoling Li2, Youjun Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 149-162, 2018, DOI: 10.31614/cmes.2018.04133

    Abstract Enhanced external counterpulsation (EECP) is able to treat myocardial ischemia, which is usually caused by coronary artery stenosis. However, the underlying mechanisms regarding why this technique is effective in treating myocardial ischemia remains unclear and there is no patient-specific counterpulsation mode for different rates of coronary artery stenosis in clinic. This study sought to investigate the hemodynamic effect of varied coronary artery stenosis rates when using EECP and the necessity of adopting targeted counterpulsation mode to consider different rates of coronary artery stenosis. Three 3-dimensional (3D) coronary models with different stenosis rates, including 55% (Model 1), 65% (Model 2), and… More >

Displaying 51-60 on page 6 of 58. Per Page