Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (381)
  • Open Access

    PROCEEDINGS

    Experimental and Numerical Simulation Study on Axial Drop Hammer Impact of Rubber Modified Non-Autoclaved Concrete Pipe Pile

    Sheng Lan1, Fei Yang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09077

    Abstract Non-autoclaved concrete pipe piles are gaining attention as an environmentally friendly alternative to autoclaved concrete pipe piles. The purpose of this study was to investigate the changes in the impact resistance of a non-autoclaved concrete pipe pile with the addition of rubber. To this end, various volume fractions of rubber particles were used to replace the fine sand in the non-autoclaved pipe pile concrete (0%, 5%, 10% and 15%). Additionally, the axial impact resistance of rubber modified non-autoclaved concrete pipe pile was studied from the concrete materials and pipe pile components through quasi-static, dynamic compression and splitting tensile tests and… More >

  • Open Access

    PROCEEDINGS

    A Modified Rate-Dependent Peridynamic Model with Rotation Effect for Dynamic Mechanical Behavior of Ceramic Materials

    Yaxun Liu1,2, Lisheng Liu1,2,*, Hai Mei1,2, Qiwen Liu1,2, Xin Lai1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09007

    Abstract As a mathematical expression of the dynamic mechanical behavior, the constitutive model plays an indispensable role in numerical simulations of ceramic materials. The current bond-based peridynamic constitutive models can accurately describe the dynamic mechanical behavior of partial ceramic materials under impact loading, however, the predicted value of the Poisson’s ratio is 0.25, which is not true for most of the known ceramic materials. Herein, based on the existing bond-based peridynamic constitutive model, the current study utilizes the description of tangential bond force and considers the influence of bond force on rotation to accurately predict the Poisson's ratio of different types… More >

  • Open Access

    PROCEEDINGS

    Peridynamic Simulation of Pellet-Clad Mechanical Interaction in Nuclear Fuel Rods

    Qiqing Liu1, Yin Yu1, Y.L. Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09220

    Abstract The thermomechanical response and potential cracking in nuclear fuel rods are extremely important for nuclear safety analysis. The Pellet-Clad Mechanical Interaction (PCMI) is a significant factor for the thermomechanical behaviors of pellet and clad. This study presents a PCMI model based on ordinary statebased peridynamic (OSB-PD) theory, which considering the heat transfer through the gap and contact heat transfer between pellet and clad. The two-dimensional (2D) models are constructed through irregular nonuniform discretization. The pellet model includes the random variability of the critical stretch of each bond based on normal distribution. The contact model with non-uniform discretization is proposed in… More >

  • Open Access

    PROCEEDINGS

    Effects of Material Heterogeneity on the Blast-Induced Rock Crack Initiation and Propagation

    Shuyu Wang1, Linjuan Wang1,*, Yunteng Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09217

    Abstract Material heterogeneity plays an important role in the blasting induced rock fracture. However, the investigation of the effects of material heterogeneity is limited by the numerical methods for dynamic fracture. In the work, we propose a peridynamic model for brittle rock with heterogeneous micro-modulus and critical stretch to investigate the effects of material heterogeneity on the blast-induced rock crack initiation and propagation. The discretization in polar coordinates is introduced into the proposed model to avoid the fallacious directional guidance to the crack initiation around the hole. The proposed model satisfies the More >

  • Open Access

    ARTICLE

    Impact Analysis of Microscopic Defect Types on the Macroscopic Crack Propagation in Sintered Silver Nanoparticles

    Zhongqing Zhang1, Bo Wan1,*, Guicui Fu1, Yutai Su2,*, Zhaoxi Wu3, Xiangfen Wang1, Xu Long2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 441-458, 2024, DOI:10.32604/cmes.2023.043616

    Abstract Sintered silver nanoparticles (AgNPs) are widely used in high-power electronics due to their exceptional properties. However, the material reliability is significantly affected by various microscopic defects. In this work, the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified, categorized, and quantified. Molecular dynamics (MD) simulations are employed to observe the failure evolution of different microscopic defects. The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion. At the same time, this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by… More >

  • Open Access

    ARTICLE

    Simulation of Corrosion-Induced Cracking of Reinforced Concrete Based on Fracture Phase Field Method

    Xiaozhou Xia1, Changsheng Qin1, Guangda Lu2, Xin Gu1,*, Qing Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2257-2276, 2024, DOI:10.32604/cmes.2023.031238

    Abstract Accurate simulation of the cracking process caused by rust expansion of reinforced concrete (RC) structures plays an intuitive role in revealing the corrosion-induced failure mechanism. Considering the quasi-brittle fracture of concrete, the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model. The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load. Then, the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC. The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with… More >

  • Open Access

    ARTICLE

    DEVELOPMENT OF A 10 KW MICROWAVE APPLICATOR FOR THERMAL CRACKING OF LIGNITE BRIQUETTES

    Benjamin Lepersa,∗, Thomas Seitza, Guido Linka, John Jelonneka,b, Mark Zinkc

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-6, 2015, DOI:10.5098/hmt.6.20

    Abstract A compact 10 kW microwave applicator operating at 2.45 GHz for fast volumetric heating and thermal cracking of lignite briquettes has been successfully designed and tested. In this paper, the applicator design and construction are presented together with a sequentially coupled electromagnetic, thermal-fluid and mechanical Comsol model. In a first step, this model allows us to calculate the power density inside the lignite material and the temperature distribution in the applicator for different water flow rates. In a second step, the total stress due to the thermal dilatation, the internal pressure inside the ceramic and the contact pressure from the… More >

  • Open Access

    ARTICLE

    A Bidimensional Finite Element Study of Crack Propagation in Austempered Ductile Iron

    Gustavo von Zeska de França, Roberto Luís de Assumpção, Marco Antonio Luersen*, Carlos Henrique da Silva

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1411-1424, 2023, DOI:10.32604/cmc.2023.043811

    Abstract Austempered ductile iron (ADI) is composed of an ausferritic matrix with graphite nodules and has a wide range of applications because of its high mechanical strength, fatigue resistance, and wear resistance compared to other cast irons. The amount and size of the nodules can be controlled by the chemical composition and austenitizing temperature. As the nodules have lower stiffness than the matrix and can act as stress concentrators, they influence crack propagation. However, the crack propagation mechanism in ADI is not yet fully understood. In this study, we describe a numerical investigation of crack propagation in ADIs subjected to cyclic… More >

  • Open Access

    ARTICLE

    Automated Pavement Crack Detection Using Deep Feature Selection and Whale Optimization Algorithm

    Shorouq Alshawabkeh, Li Wu*, Daojun Dong, Yao Cheng, Liping Li, Mohammad Alanaqreh

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 63-77, 2023, DOI:10.32604/cmc.2023.042183

    Abstract Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses. Recent advancements in deep learning (DL) techniques have shown promising results in detecting pavement cracks; however, the selection of relevant features for classification remains challenging. In this study, we propose a new approach for pavement crack detection that integrates deep learning for feature extraction, the whale optimization algorithm (WOA) for feature selection, and random forest (RF) for classification. The performance of the models was evaluated using accuracy, recall, precision, F1 score, and area under the receiver operating characteristic curve (AUC). Our findings reveal that Model… More >

  • Open Access

    ARTICLE

    Gated Fusion Based Transformer Model for Crack Detection on Wind Turbine Blade

    Wenyang Tang1,2, Cong Liu1,*, Bo Zhang2

    Energy Engineering, Vol.120, No.11, pp. 2667-2681, 2023, DOI:10.32604/ee.2023.040743

    Abstract Harsh working environments and wear between blades and other unit components can easily lead to cracks and damage on wind turbine blades. The cracks on the blades can endanger the shafting of the generator set, the tower and other components, and even cause the tower to collapse. To achieve high-precision wind blade crack detection, this paper proposes a crack fault-detection strategy that integrates Gated Residual Network (GRN), a fusion module and Transformer. Firstly, GRN can reduce unnecessary noisy inputs that could negatively impact performance while preserving the integrity of feature information. In addition, to gain in-depth information about the characteristics… More >

Displaying 11-20 on page 2 of 381. Per Page