Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (130)
  • Open Access

    ARTICLE

    FedDPL: Federated Dynamic Prototype Learning for Privacy-Preserving Malware Analysis across Heterogeneous Clients

    Danping Niu1, Yuan Ping1,*, Chun Guo2, Xiaojun Wang3, Bin Hao4

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073630 - 12 January 2026

    Abstract With the increasing complexity of malware attack techniques, traditional detection methods face significant challenges, such as privacy preservation, data heterogeneity, and lacking category information. To address these issues, we propose Federated Dynamic Prototype Learning (FedDPL) for malware classification by integrating Federated Learning with a specifically designed K-means. Under the Federated Learning framework, model training occurs locally without data sharing, effectively protecting user data privacy and preventing the leakage of sensitive information. Furthermore, to tackle the challenges of data heterogeneity and the lack of category information, FedDPL introduces a dynamic prototype learning mechanism, which adaptively adjusts the More >

  • Open Access

    ARTICLE

    AquaTree: Deep Reinforcement Learning-Driven Monte Carlo Tree Search for Underwater Image Enhancement

    Chao Li1,3,#, Jianing Wang1,3,#, Caichang Ding2,*, Zhiwei Ye1,3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071242 - 12 January 2026

    Abstract Underwater images frequently suffer from chromatic distortion, blurred details, and low contrast, posing significant challenges for enhancement. This paper introduces AquaTree, a novel underwater image enhancement (UIE) method that reformulates the task as a Markov Decision Process (MDP) through the integration of Monte Carlo Tree Search (MCTS) and deep reinforcement learning (DRL). The framework employs an action space of 25 enhancement operators, strategically grouped for basic attribute adjustment, color component balance, correction, and deblurring. Exploration within MCTS is guided by a dual-branch convolutional network, enabling intelligent sequential operator selection. Our core contributions include: (1) a More >

  • Open Access

    ARTICLE

    Solving Multi-Depot Vehicle Routing Problems with Dynamic Customer Demand Using a Scheduling System TS-DPU Based on TS-ACO

    Tsu-Yang Wu1, Chengyuan Yu1, Yanan Zhao2, Saru Kumari3, Chien-Ming Chen1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069139 - 12 January 2026

    Abstract With the increasing complexity of logistics operations, traditional static vehicle routing models are no longer sufficient. In practice, customer demands often arise dynamically, and multi-depot systems are commonly used to improve efficiency. This paper first introduces a vehicle routing problem with the goal of minimizing operating costs in a multi-depot environment with dynamic demand. New customers appear in the delivery process at any time and are periodically optimized according to time slices. Then, we propose a scheduling system TS-DPU based on an improved ant colony algorithm TS-ACO to solve this problem. The classical ant colony More >

  • Open Access

    ARTICLE

    A Temperature-Indexed Concrete Damage Plasticity Model Incorporating Bond-Slip Mechanism for Thermo-Mechanical Analysis of Reinforced Concrete Structures

    Wu Feng1,2,*, Tengku Anita Raja Hussin1, Xu Yang3

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071664 - 08 January 2026

    Abstract This study investigates the thermo–mechanical behavior of C40 concrete and reinforced concrete subjected to elevated temperatures up to 700°C by integrating experimental testing and advanced numerical modeling. A temperature-indexed Concrete Damage Plasticity (CDP) framework incorporating bond–slip effects was developed in Abaqus to capture both global stress–strain responses and localized damage evolution. Uniaxial compression tests on thermally exposed cylinders provided residual strength data and failure observations for model calibration and validation. Results demonstrated a distinct two-stage degradation regime: moderate stiffness and strength reduction up to ~400°C, followed by sharp deterioration beyond 500°C–600°C, with residual capacity at… More >

  • Open Access

    ARTICLE

    A Multi-Objective Adaptive Car-Following Framework for Autonomous Connected Vehicles with Deep Reinforcement Learning

    Abu Tayab1,*, Yanwen Li1, Ahmad Syed2, Ghanshyam G. Tejani3,4,*, Doaa Sami Khafaga5, El-Sayed M. El-kenawy6, Amel Ali Alhussan7, Marwa M. Eid8,9

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-27, 2026, DOI:10.32604/cmc.2025.070583 - 09 December 2025

    Abstract Autonomous connected vehicles (ACV) involve advanced control strategies to effectively balance safety, efficiency, energy consumption, and passenger comfort. This research introduces a deep reinforcement learning (DRL)-based car-following (CF) framework employing the Deep Deterministic Policy Gradient (DDPG) algorithm, which integrates a multi-objective reward function that balances the four goals while maintaining safe policy learning. Utilizing real-world driving data from the highD dataset, the proposed model learns adaptive speed control policies suitable for dynamic traffic scenarios. The performance of the DRL-based model is evaluated against a traditional model predictive control-adaptive cruise control (MPC-ACC) controller. Results show that the… More >

  • Open Access

    ARTICLE

    A Study on Improving the Accuracy of Semantic Segmentation for Autonomous Driving

    Bin Zhang*, Zhancheng Xu

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-12, 2026, DOI:10.32604/cmc.2025.069979 - 09 December 2025

    Abstract This study aimed to enhance the performance of semantic segmentation for autonomous driving by improving the 2DPASS model. Two novel improvements were proposed and implemented in this paper: dynamically adjusting the loss function ratio and integrating an attention mechanism (CBAM). First, the loss function weights were adjusted dynamically. The grid search method is used for deciding the best ratio of 7:3. It gives greater emphasis to the cross-entropy loss, which resulted in better segmentation performance. Second, CBAM was applied at different layers of the 2D encoder. Heatmap analysis revealed that introducing it after the second… More >

  • Open Access

    ARTICLE

    DPIL-Traj: Differential Privacy Trajectory Generation Framework with Imitation Learning

    Huaxiong Liao1,2, Xiangxuan Zhong2, Xueqi Chen2, Yirui Huang3, Yuwei Lin2, Jing Zhang2,*, Bruce Gu4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069208 - 10 November 2025

    Abstract The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns. However, the use of real-world trajectory data poses significant privacy risks, such as location re-identification and correlation attacks. To address these challenges, privacy-preserving trajectory generation methods are critical for applications relying on sensitive location data. This paper introduces DPIL-Traj, an advanced framework designed to generate synthetic trajectories while achieving a superior balance between data utility and privacy preservation. Firstly, the framework incorporates Differential Privacy Clustering, which anonymizes trajectory data by applying differential privacy techniques that add noise, ensuring the… More >

  • Open Access

    ARTICLE

    Enhancing anticancer, antioxidant, and antibacterial activities of chalcogen-based SnSe nanoparticles synthesized through the co-precipitation method

    H. A. Rather1,*, J. B. A. Wahid2, M. A. Dar3, L. Guganathan4, U. A. Dar5, P. Arularasan6, S. E. I. Yagoub7, L. G. Amin7

    Chalcogenide Letters, Vol.22, No.5, pp. 461-468, 2025, DOI:10.15251/CL.2025.225.461

    Abstract SnSe powdered nanoparticles (NPs) are prepared using the co-precipitation method. The powdered NPs were studied using X-ray diffraction (XRD), UV-absorbance spectroscopy, and scanning electron microscopy (SEM) characterization techniques. The XRD result indicates that NPs are orthorhombic with a crystalline size of 4 nm for TS-1, 6 nm for TS-2, and 13 nm for TS-3, respectively. The SEM images show the surface morphology of the prepared NPs is not fully spherical, but semi-flower-like. The optical properties of the powdered NPs are found by UV-Vis absorbance spectroscopy, in which the highest absorbance was found between 200 nm More >

  • Open Access

    ARTICLE

    Extending DDPG with Physics-Informed Constraints for Energy-Efficient Robotic Control

    Abubakar Elsafi1,*, Arafat Abdulgader Mohammed Elhag2, Lubna A. Gabralla3, Ali Ahmed4, Ashraf Osman Ibrahim5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 621-647, 2025, DOI:10.32604/cmes.2025.072726 - 30 October 2025

    Abstract Energy efficiency stands as an essential factor when implementing deep reinforcement learning (DRL) policies for robotic control systems. Standard algorithms, including Deep Deterministic Policy Gradient (DDPG), primarily optimize task rewards but at the cost of excessively high energy consumption, making them impractical for real-world robotic systems. To address this limitation, we propose Physics-Informed DDPG (PI-DDPG), which integrates physics-based energy penalties to develop energy-efficient yet high-performing control policies. The proposed method introduces adaptive physics-informed constraints through a dynamic weighting factor (), enabling policies that balance reward maximization with energy savings. Our motivation is to overcome the… More >

  • Open Access

    ARTICLE

    ELM-APDPs: An Explainable Ensemble Learning Method for Accurate Prediction of Druggable Proteins

    Mujeebu Rehman1, Qinghua Liu1, Ali Ghulam2, Tariq Ahmad3, Jawad Khan4,*, Dildar Hussain5,*, Yeong Hyeon Gu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 779-805, 2025, DOI:10.32604/cmes.2025.067412 - 30 October 2025

    Abstract Identifying druggable proteins, which are capable of binding therapeutic compounds, remains a critical and resource-intensive challenge in drug discovery. To address this, we propose CEL-IDP (Comparison of Ensemble Learning Methods for Identification of Druggable Proteins), a computational framework combining three feature extraction methods Dipeptide Deviation from Expected Mean (DDE), Enhanced Amino Acid Composition (EAAC), and Enhanced Grouped Amino Acid Composition (EGAAC) with ensemble learning strategies (Bagging, Boosting, Stacking) to classify druggable proteins from sequence data. DDE captures dipeptide frequency deviations, EAAC encodes positional amino acid information, and EGAAC groups residues by physicochemical properties to generate… More >

Displaying 1-10 on page 1 of 130. Per Page