Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,756)
  • Open Access

    ARTICLE

    Semantic Information Extraction from Multi-Corpora Using Deep Learning

    Sunil Kumar1, Hanumat G. Sastry1, Venkatadri Marriboyina2, Hammam Alshazly3,*, Sahar Ahmed Idris4, Madhushi Verma5, Manjit Kaur5

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5021-5038, 2022, DOI:10.32604/cmc.2022.021149 - 11 October 2021

    Abstract Information extraction plays a vital role in natural language processing, to extract named entities and events from unstructured data. Due to the exponential data growth in the agricultural sector, extracting significant information has become a challenging task. Though existing deep learning-based techniques have been applied in smart agriculture for crop cultivation, crop disease detection, weed removal, and yield production, still it is difficult to find the semantics between extracted information due to unswerving effects of weather, soil, pest, and fertilizer data. This paper consists of two parts. An initial phase, which proposes a data preprocessing More >

  • Open Access

    ARTICLE

    Fusion of Infrared and Visible Images Using Fuzzy Based Siamese Convolutional Network

    Kanika Bhalla1, Deepika Koundal2,*, Surbhi Bhatia3, Mohammad Khalid Imam Rahmani4, Muhammad Tahir4

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5503-5518, 2022, DOI:10.32604/cmc.2022.021125 - 11 October 2021

    Abstract Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared (IR)/visible (VS) images. Dissimilarities in various kind of features in these images are vital to preserve in the single fused image. Hence, simultaneous preservation of both the aspects at the same time is a challenging task. However, most of the existing methods utilize the manual extraction of features; and manual complicated designing of fusion rules resulted in a blurry artifact in the fused image. Therefore, this study has proposed a hybrid algorithm for the integration of multi-features among two heterogeneous images.… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning-Based Unsupervised Anomaly Detection in High Dimensional Data

    Amgad Muneer1,2,*, Shakirah Mohd Taib1,2, Suliman Mohamed Fati3, Abdullateef O. Balogun1, Izzatdin Abdul Aziz1,2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5363-5381, 2022, DOI:10.32604/cmc.2022.021113 - 11 October 2021

    Abstract Anomaly detection in high dimensional data is a critical research issue with serious implication in the real-world problems. Many issues in this field still unsolved, so several modern anomaly detection methods struggle to maintain adequate accuracy due to the highly descriptive nature of big data. Such a phenomenon is referred to as the “curse of dimensionality” that affects traditional techniques in terms of both accuracy and performance. Thus, this research proposed a hybrid model based on Deep Autoencoder Neural Network (DANN) with five layers to reduce the difference between the input and output. The proposed… More >

  • Open Access

    ARTICLE

    Multi-View Multi-Modal Head-Gaze Estimation for Advanced Indoor User Interaction

    Jung-Hwa Kim1, Jin-Woo Jeong2,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5107-5132, 2022, DOI:10.32604/cmc.2022.021107 - 11 October 2021

    Abstract Gaze estimation is one of the most promising technologies for supporting indoor monitoring and interaction systems. However, previous gaze estimation techniques generally work only in a controlled laboratory environment because they require a number of high-resolution eye images. This makes them unsuitable for welfare and healthcare facilities with the following challenging characteristics: 1) users’ continuous movements, 2) various lighting conditions, and 3) a limited amount of available data. To address these issues, we introduce a multi-view multi-modal head-gaze estimation system that translates the user’s head orientation into the gaze direction. The proposed system captures the… More >

  • Open Access

    ARTICLE

    Intelligent Deep Learning Based Automated Fish Detection Model for UWSN

    Mesfer Al Duhayyim1, Haya Mesfer Alshahrani2, Fahd N. Al-Wesabi3, Mohammed Alamgeer4, Anwer Mustafa Hilal5,*, Manar Ahmed Hamza5

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5871-5887, 2022, DOI:10.32604/cmc.2022.021093 - 11 October 2021

    Abstract An exponential growth in advanced technologies has resulted in the exploration of Ocean spaces. It has paved the way for new opportunities that can address questions relevant to diversity, uniqueness, and difficulty of marine life. Underwater Wireless Sensor Networks (UWSNs) are widely used to leverage such opportunities while these networks include a set of vehicles and sensors to monitor the environmental conditions. In this scenario, it is fascinating to design an automated fish detection technique with the help of underwater videos and computer vision techniques so as to estimate and monitor fish biomass in water… More >

  • Open Access

    ARTICLE

    Intelligent Deep Learning Based Disease Diagnosis Using Biomedical Tongue Images

    V. Thanikachalam1,*, S. Shanthi2, K. Kalirajan3, Sayed Abdel-Khalek4,5, Mohamed Omri6, Lotfi M. Ladhar7

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5667-5681, 2022, DOI:10.32604/cmc.2022.020965 - 11 October 2021

    Abstract The rapid development of biomedical imaging modalities led to its wide application in disease diagnosis. Tongue-based diagnostic procedures are proficient and non-invasive in nature to carry out secondary diagnostic processes ubiquitously. Traditionally, physicians examine the characteristics of tongue prior to decision-making. In this scenario, to get rid of qualitative aspects, tongue images can be quantitatively inspected for which a new disease diagnosis model is proposed. This model can reduce the physical harm made to the patients. Several tongue image analytical methodologies have been proposed earlier. However, there is a need exists to design an intelligent… More >

  • Open Access

    ARTICLE

    Automatic Detection of Nephrops Norvegicus Burrows from Underwater Imagery Using Deep Learning

    Atif Naseer1,*, Enrique Nava Baro1, Sultan Daud Khan2, Yolanda Vila3, Jennifer Doyle4

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5321-5344, 2022, DOI:10.32604/cmc.2022.020886 - 11 October 2021

    Abstract The Norway lobster, Nephrops norvegicus, is one of the main commercial crustacean fisheries in Europe. The abundance of Nephrops norvegicus stocks is assessed based on identifying and counting the burrows where they live from underwater videos collected by camera systems mounted on sledges. The Spanish Oceanographic Institute (IEO) and Marine Institute Ireland (MI-Ireland) conducts annual underwater television surveys (UWTV) to estimate the total abundance of Nephrops within the specified area, with a coefficient of variation (CV) or relative standard error of less than 20%. Currently, the identification and counting of the Nephrops burrows are carried out manually by… More >

  • Open Access

    ARTICLE

    Deep Learning Based Modeling of Groundwater Storage Change

    Mohd Anul Haq1,*, Abdul Khadar Jilani1, P. Prabu2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4599-4617, 2022, DOI:10.32604/cmc.2022.020495 - 11 October 2021

    Abstract The understanding of water resource changes and a proper projection of their future availability are necessary elements of sustainable water planning. Monitoring GWS change and future water resource availability are crucial, especially under changing climatic conditions. Traditional methods for in situ groundwater well measurement are a significant challenge due to data unavailability. The present investigation utilized the Long Short Term Memory (LSTM) networks to monitor and forecast Terrestrial Water Storage Change (TWSC) and Ground Water Storage Change (GWSC) based on Gravity Recovery and Climate Experiment (GRACE) datasets from 2003–2025 for five basins of Saudi Arabia. An… More >

  • Open Access

    ARTICLE

    An Optimized Deep Learning Model for Emotion Classification in Tweets

    Chinu Singla1, Fahd N. Al-Wesabi2,3, Yash Singh Pathania1, Badria Sulaiman Alfurhood4, Anwer Mustafa Hilal5,*, Mohammed Rizwanullah5, Manar Ahmed Hamza5, Mohammad Mahzari6

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6365-6380, 2022, DOI:10.32604/cmc.2022.020480 - 11 October 2021

    Abstract The task of automatically analyzing sentiments from a tweet has more use now than ever due to the spectrum of emotions expressed from national leaders to the average man. Analyzing this data can be critical for any organization. Sentiments are often expressed with different intensity and topics which can provide great insight into how something affects society. Sentiment analysis in Twitter mitigates the various issues of analyzing the tweets in terms of views expressed and several approaches have already been proposed for sentiment analysis in twitter. Resources used for analyzing tweet emotions are also briefly… More >

  • Open Access

    ARTICLE

    Deep Stacked Ensemble Learning Model for COVID-19 Classification

    G. Madhu1, B. Lalith Bharadwaj1, Rohit Boddeda2, Sai Vardhan1, K. Sandeep Kautish3, Khalid Alnowibet4, Adel F. Alrasheedi4, Ali Wagdy Mohamed5,6,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5467-5469, 2022, DOI:10.32604/cmc.2022.020455 - 11 October 2021

    Abstract COVID-19 is a growing problem worldwide with a high mortality rate. As a result, the World Health Organization (WHO) declared it a pandemic. In order to limit the spread of the disease, a fast and accurate diagnosis is required. A reverse transcript polymerase chain reaction (RT-PCR) test is often used to detect the disease. However, since this test is time-consuming, a chest computed tomography (CT) or plain chest X-ray (CXR) is sometimes indicated. The value of automated diagnosis is that it saves time and money by minimizing human effort. Three significant contributions are made by… More >

Displaying 1401-1410 on page 141 of 1756. Per Page