Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    REVIEW

    Enhancing Deepfake Detection: Proactive Forensics Techniques Using Digital Watermarking

    Zhimao Lai1,2, Saad Arif3, Cong Feng4, Guangjun Liao5, Chuntao Wang6,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 73-102, 2025, DOI:10.32604/cmc.2024.059370 - 03 January 2025

    Abstract With the rapid advancement of visual generative models such as Generative Adversarial Networks (GANs) and stable Diffusion, the creation of highly realistic Deepfake through automated forgery has significantly progressed. This paper examines the advancements in Deepfake detection and defense technologies, emphasizing the shift from passive detection methods to proactive digital watermarking techniques. Passive detection methods, which involve extracting features from images or videos to identify forgeries, encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics. In contrast, proactive digital watermarking techniques embed specific markers into images or videos, facilitating More >

  • Open Access

    ARTICLE

    Advancing Deepfake Detection Using Xception Architecture: A Robust Approach for Safeguarding against Fabricated News on Social Media

    Dunya Ahmed Alkurdi1,2,*, Mesut Cevik2, Abdurrahim Akgundogdu3

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4285-4305, 2024, DOI:10.32604/cmc.2024.057029 - 19 December 2024

    Abstract Deepfake has emerged as an obstinate challenge in a world dominated by light. Here, the authors introduce a new deepfake detection method based on Xception architecture. The model is tested exhaustively with millions of frames and diverse video clips; accuracy levels as high as 99.65% are reported. These are the main reasons for such high efficacy: superior feature extraction capabilities and stable training mechanisms, such as early stopping, characterizing the Xception model. The methodology applied is also more advanced when it comes to data preprocessing steps, making use of state-of-the-art techniques applied to ensure constant… More >

  • Open Access

    ARTICLE

    A Deepfake Detection Algorithm Based on Fourier Transform of Biological Signal

    Yin Ni1, Wu Zeng2,*, Peng Xia1, Guang Stanley Yang3, Ruochen Tan4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5295-5312, 2024, DOI:10.32604/cmc.2024.049911 - 20 June 2024

    Abstract Deepfake-generated fake faces, commonly utilized in identity-related activities such as political propaganda, celebrity impersonations, evidence forgery, and familiar fraud, pose new societal threats. Although current deepfake generators strive for high realism in visual effects, they do not replicate biometric signals indicative of cardiac activity. Addressing this gap, many researchers have developed detection methods focusing on biometric characteristics. These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography (rPPG) signal, resulting in high detection accuracy. However, in the spectral analysis, existing approaches often only consider the power spectral density… More >

  • Open Access

    ARTICLE

    Multi-Branch Deepfake Detection Algorithm Based on Fine-Grained Features

    Wenkai Qin1, Tianliang Lu1,*, Lu Zhang2, Shufan Peng1, Da Wan1

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 467-490, 2023, DOI:10.32604/cmc.2023.042417 - 31 October 2023

    Abstract With the rapid development of deepfake technology, the authenticity of various types of fake synthetic content is increasing rapidly, which brings potential security threats to people's daily life and social stability. Currently, most algorithms define deepfake detection as a binary classification problem, i.e., global features are first extracted using a backbone network and then fed into a binary classifier to discriminate true or false. However, the differences between real and fake samples are often subtle and local, and such global feature-based detection algorithms are not optimal in efficiency and accuracy. To this end, to enhance… More >

  • Open Access

    ARTICLE

    Deepfake Video Detection Based on Improved CapsNet and Temporal–Spatial Features

    Tianliang Lu*, Yuxuan Bao, Lanting Li

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 715-740, 2023, DOI:10.32604/cmc.2023.034963 - 06 February 2023

    Abstract Rapid development of deepfake technology led to the spread of forged audios and videos across network platforms, presenting risks for numerous countries, societies, and individuals, and posing a serious threat to cyberspace security. To address the problem of insufficient extraction of spatial features and the fact that temporal features are not considered in the deepfake video detection, we propose a detection method based on improved CapsNet and temporal–spatial features (iCapsNet–TSF). First, the dynamic routing algorithm of CapsNet is improved using weight initialization and updating. Then, the optical flow algorithm is used to extract interframe temporal… More >

  • Open Access

    ARTICLE

    Reducing Dataset Specificity for Deepfakes Using Ensemble Learning

    Qaiser Abbas1, Turki Alghamdi1, Yazed Alsaawy1, Tahir Alyas2,*, Ali Alzahrani1, Khawar Iqbal Malik3, Saira Bibi4

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4261-4276, 2023, DOI:10.32604/cmc.2023.034482 - 31 October 2022

    Abstract The emergence of deep fake videos in recent years has made image falsification a real danger. A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employing deep learning to analyze speech or emotional content. Because of how clever these videos are frequently, Manipulation is challenging to spot. Social media are the most frequent and dangerous targets since they are weak outlets that are open to extortion or slander a human. In earlier times, it was not so easy to alter the videos, which… More >

  • Open Access

    ARTICLE

    Detecting Deepfake Images Using Deep Learning Techniques and Explainable AI Methods

    Wahidul Hasan Abir1, Faria Rahman Khanam1, Kazi Nabiul Alam1, Myriam Hadjouni2, Hela Elmannai3, Sami Bourouis4, Rajesh Dey5, Mohammad Monirujjaman Khan1,*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2151-2169, 2023, DOI:10.32604/iasc.2023.029653 - 19 July 2022

    Abstract Nowadays, deepfake is wreaking havoc on society. Deepfake content is created with the help of artificial intelligence and machine learning to replace one person’s likeness with another person in pictures or recorded videos. Although visual media manipulations are not new, the introduction of deepfakes has marked a breakthrough in creating fake media and information. These manipulated pictures and videos will undoubtedly have an enormous societal impact. Deepfake uses the latest technology like Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) to construct automated methods for creating fake content that is becoming increasingly difficult… More >

  • Open Access

    ARTICLE

    DeepFake Videos Detection Based on Texture Features

    Bozhi Xu1, Jiarui Liu1, Jifan Liang1, Wei Lu1,*, Yue Zhang2

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1375-1388, 2021, DOI:10.32604/cmc.2021.016760 - 22 March 2021

    Abstract In recent years, with the rapid development of deep learning technologies, some neural network models have been applied to generate fake media. DeepFakes, a deep learning based forgery technology, can tamper with the face easily and generate fake videos that are difficult to be distinguished by human eyes. The spread of face manipulation videos is very easy to bring fake information. Therefore, it is important to develop effective detection methods to verify the authenticity of the videos. Due to that it is still challenging for current forgery technologies to generate all facial details and the… More >

Displaying 1-10 on page 1 of 8. Per Page