Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (216)
  • Open Access

    ARTICLE

    Subcritical and Oscillatory Dynamic Surface Deformations in Non-Cylindrical Liquid Bridges

    V. Shevtsova1,2, A. Mialdun1, C. Ferrera1,4, M. Ermakov3,4, J. M. Montanero4

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.1, pp. 43-54, 2008, DOI:10.3970/fdmp.2008.004.043

    Abstract Dynamic free surface deformations induced by buoyant and thermocapillary convection in liquid bridges of 5cSt silicone oil are studied experimentally and numerically. The experiments are performed in ground conditions and static deformation is unavoidable. Convective motion starts in the liquid bridge as soon as ΔT ≠ 0 and initially leads to a stationary dynamic deformation of the free surface. Oscillatory motion starts at a critical value of ΔT and causes oscillations of the interface. The final supercritical shape of the free surface is a result of the static shape with superimposed subcritical stationary and oscillatory dynamic deformations. All these contributions… More >

  • Open Access

    ARTICLE

    Scalings for Droplet Sizes in Shear-Driven Breakup: Non-Microfluidic Ways to Monodisperse Emulsions

    V. Cristini1, Y. Renardy2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 77-94, 2006, DOI:10.3970/fdmp.2006.002.077

    Abstract We review studies of a drop of viscous liquid, suspended in another liquid, and undergoing breakup in an impulsively started shear flow. Stokes flow conditions as well as the effects of inertia are reported. They reveal a universal scaling for the fragments, which allows one to use sheared emulsions to produce monodispersity as an alternative to microfluidic devices. More >

  • Open Access

    ARTICLE

    A Deformation and a Break of Hanging Thin Film under Microgravity Conditions

    A. Ovcharova1, N.Stankous2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.4, pp. 349-356, 2007, DOI:10.3970/fdmp.2007.003.349

    Abstract We consider a deformation of a thin film which is hanging between two solid flat walls under thermal load action. A two-dimensional model is applied to describe the motion of thin layers of viscous nonisothermal liquid under microgravity conditions. The model is based on the Navier-Stokes equations. A numerical analysis of the influence of thermal loads on the deformation and break of freely hanging thin films has been carried out. The mutual influence of capillary and thermo-capillary forces on thin film free surface position has been shown. The results of model problem solutions are presented. More >

  • Open Access

    ARTICLE

    Interface Deformation and Convective Transport in Horizontal Differentially Heated Air-Oil Layers

    Srikrishna Sahu1, K. Muralidhar1, P.K. Panigrahi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.3, pp. 265-286, 2007, DOI:10.3970/fdmp.2007.003.265

    Abstract Convection in a differentially heated cavity partly filled with silicone oil has been experimentally studied. The air-oil layers are subjected to a temperature difference in the vertical direction, with the lower wall being heated with respect to the top. The overall geometry is that of an enclosed cavity that is octagonal in plan. Heights of oil layers considered for experiments correspond to 30, 50, and 70% of the vertical cavity dimension. Measurements have been carried out using a shadowgraph technique. A limited number of interferograms have also been recorded. The shadowgraph technique has been validated against interferograms under identical experimental… More >

  • Open Access

    ARTICLE

    Effects of Transverse Shear on Strain Stiffening of Biological Fiber Networks

    H. Jiang1,2, B. Yang1, S. Liu3

    CMC-Computers, Materials & Continua, Vol.38, No.2, pp. 61-77, 2013, DOI:10.3970/cmc.2013.038.061

    Abstract Actin, fibrin and collagen fiber networks are typical hierarchical biological materials formed by bundling fibrils into fibers and branching/adjoining fibers into networks. The bundled fibrils interact with each other through weak van der Waals forces and, in some cases, additional spotted covalent crosslinks. In the present work, we apply Timoshenko's beam theory that takes into account the effect of transverse shear between fibrils in each bundle to study the overall mechanical behaviors of such fiber networks. Previous experimental studies suggested that these fibers are initially loose bundles. Based on the evidence, it is hypothesized that the fibers undergo transitions from… More >

  • Open Access

    ARTICLE

    Elastic Instability of Pseudo-Elastic Rubber Balloons

    Ren Jiusheng1

    CMC-Computers, Materials & Continua, Vol.7, No.1, pp. 25-32, 2008, DOI:10.3970/cmc.2008.007.025

    Abstract Elastic instability for the inflation and deflation of a thin-walled spherical rubber balloon is examined within the framework of finite pseudo-elasticity. When a spherical rubber balloon is inflated, it is subject to a complex deformation after a pressure maximum has been obtained. One part of the balloon is lightly stretched while the remainder becomes highly stretched. So an aspherical deformation is observed after the initial spherical inflation. A pseudo-elastic strain energy function including a damage variable which may model the loading, unloading and reloading of rubber is used. The balloon is idealized as an elastic membrane and the inflation, deflation… More >

  • Open Access

    ARTICLE

    A simple and accurate four-node quadrilateral element using stabilized nodal integration for laminated plates

    H. Nguyen-Van1, N. Mai Duy2, T. Tran-Cong 3

    CMC-Computers, Materials & Continua, Vol.6, No.3, pp. 159-176, 2007, DOI:10.3970/cmc.2007.006.159

    Abstract This paper reports the development of a simple but efficient and accurate four-node quadrilateral element for models of laminated, anisotropic plate behaviour within the framework of the first-order shear deformation theory. The approach incorporates the strain smoothing method for mesh-free conforming nodal integration into the conventional finite element techniques. The membrane-bending part of the element stiffness matrix is calculated by the line integral on the boundaries of the smoothing elements while the shear part is performed using an independent interpolation field in the natural co-ordinate system. Numerical results show that the element offered here is locking-free for extremely thin laminates,… More >

  • Open Access

    ARTICLE

    A New Locking Free Higher Order Finite Element Formulation for Composite Beams.

    M.V.V.S. Murthy1, S. Gopalakrishnan2,3, P.S. Nair4

    CMC-Computers, Materials & Continua, Vol.5, No.1, pp. 43-62, 2007, DOI:10.3970/cmc.2007.005.043

    Abstract A refined 2-node, 7 DOF/node beam element formulation is presented in this paper. This formulation is based on higher order shear deformation theory with lateral contraction for axial-flexural-shear coupled deformation in asymmetrically stacked laminated composite beams. In addition to axial, transverse and rotational degrees of freedom, the formulation also incorporates the lateral contraction and its higher order counterparts as degrees of freedom. The element shape functions are derived by solving the static part of the governing equations. The element considers general ply stacking and the numerical results shows that the element exhibits super convergent property. The efficiency of the element… More >

  • Open Access

    ARTICLE

    An Integrated Suture Simulation System with Deformation Constraint Under A Suture Control Strategy

    Xiaorui Zhang1,2,3,*, Jiali Duan1, Jia Liu2, Norman I. Badler3

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 1055-1071, 2019, DOI:10.32604/cmc.2019.03915

    Abstract Current research on suture simulation mainly focus on the construction of suture line, and existing suture simulation systems still need to be improved in terms of diversity, soft tissue effects, and stability. This paper presents an integrated liver suture surgery system composed of three consecutive suture circumstances, which is conducive to liver suture surgery training. The physically-based models used in this simulation are based on different mass-spring models regulated by a special constrained algorithm, which can improve the model accuracy, and stability by appropriately restraining the activity sphere of the surrounding mass nodes around the suture points. We also studied… More >

  • Open Access

    ARTICLE

    A Novel Twist Deformation Model of Soft Tissue in Surgery Simulation

    Xiaorui Zhang1,2,3,*, Pengpai Wang1, Wei Sun2, Norman I. Badler3

    CMC-Computers, Materials & Continua, Vol.55, No.2, pp. 297-319, 2018, DOI:10.3970/cmc.2018.01764

    Abstract Real-time performance and accuracy are two most challenging requirements in virtual surgery training. These difficulties limit the promotion of advanced models in virtual surgery, including many geometric and physical models. This paper proposes a physical model of virtual soft tissue, which is a twist model based on the Kriging interpolation and membrane analogy. The proposed model can quickly locate spatial position through Kriging interpolation method and accurately compute the force change on the soft tissue through membrane analogy method. The virtual surgery simulation system is built with a PHANTOM OMNI haptic interaction device to simulate the torsion of virtual stomach… More >

Displaying 191-200 on page 20 of 216. Per Page