Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (210)
  • Open Access

    PROCEEDINGS

    A Novel Finite Difference Method for Solving Nonlinear Static Beam Equations of Wind Turbine Blade Under Large Deflections

    Hang Meng1,*, Jiaxing Wu1, Guangxing Wu1, Kai Long1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09685

    Abstract Wind energy is one of the most promising renewable energies in the world. To generate more electricity, the wind turbines are getting larger and larger in recent decades [1]. With the wind turbine size growing, the length of the blade is getting slender. The large deflections of slender wind turbine blade will inevitably lead to geometric nonlinearities [2], e.g. nonlinear coupling between torsion and deflection, which complicates the governing equations of motion. To simplify the solution of the nonlinear equations, in the current research, a novel finite-difference method was proposed to solve the nonlinear equations of static beam model for… More >

  • Open Access

    PROCEEDINGS

    Nanomechanics of Incipient Kink Defects Formed in Nanocellulose

    Rongzhuang Song1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09608

    Abstract Kink defects in nanocellulose are ubiquitous yet associated questions remain open regarding the unclear microstructure-mechanical property relationship. Various kink patterns without molecular-scale resolution result in bemusements of how nanocellulose forms different kinks and what the fundamental mechanisms of reversible and irreversible kinks are. In our atomic force microscopy images of mechanically treated cellulose nanofibrils, bent nanofibrils usually exhibit small curvatures while kinked nanofibrils feature sharp bends, in which kinks are conspicuous due to their promiscuous configurations. To identify the nanomechanics of incipient kink defects formed in nanocellulose, molecular dynamics simulations of cellulose nanocrystals (CNCs) under curvature-dependent bending are subsequently carried… More >

  • Open Access

    PROCEEDINGS

    Prediction of Effective Properties for Hyperelastic Materials with Large Deformation Behavior vis FEM-Cluster Based Analysis (FCA)

    Yinghao Nie1, Shan Tang1,*, Gengdong Cheng1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09603

    Abstract Advanced heterogeneous materials are widely used in many fields because of their excellent properties, especially those with hyperelastic properties and significant deformation behavior. Highly efficient numerical prediction methods of nonlinear mechanical properties of heterogeneous material provide essential tools for two-scale material and structural analysis, data-driven material design, and direct application in various engineering fields. Recently, the Clustering-based Reduced Order Model (CROM) methods [1-6] have proven effective in many nonlinear homogenization problems. However, some CROM methods would need help predicting significant large deformation behavior with more than 50% true strain. This presentation introduces the FEM-Cluster based Analysis (FCA: one of the… More >

  • Open Access

    PROCEEDINGS

    Extension of Ordinary State-Based Peridynamic Model for Nonlinear Analysis

    Mengnan Zhang1,*, Fucheng Tian1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09593

    Abstract Peridynamic is a nonlocal theory that uses integral forms of governing equations, making it suitable for describing objects with discontinuous states such as cracks. After more than two decades of development, peridynamic has been effectively applied to numerous solid mechanics studies. However, in the field of ordinary state-based peridynamic modeling nonlinear deformation, a more comprehensive model that can establish a general connection with continuum mechanics and allow for the selection of different influence functions is still lacking. As a consequence, a further extension to existing models is promising, and it represents a substantial addition to the current peridynamic model. In… More >

  • Open Access

    PROCEEDINGS

    Tensile Properties and Microscopic Mechanism of Carbon Nanotube/Graphene Foam Materials

    Shuai Wang1,*, Lihong Liang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09163

    Abstract Compared to pure carbon nanotube (CNT) foam (CF) and pure graphene foam (GrF), the CNT/graphene composite foam show enhanced mechanical properties, using coarse-grained molecular dynamics method, the tensile and compressive properties and corresponding deformation mechanism of several typical CNT/graphene composite foams were studied. The CNT coating could enhance the bending resistance of graphene, based on the CNT-coated graphene flakes, the CNT-coated graphene foam (CCGF) is constructed, which shows better compressive modulus due to the enhanced bending resistance of CNT-coated graphene flakes compared to graphene in pure GrF [1]. CNT can enhance the mechanical properties of graphene foams not only by… More >

  • Open Access

    PROCEEDINGS

    A Novel Topology Optimization Method for Local Relative Displacement Difference Minimization

    Jinyu Gu1, Jinping Qu1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09161

    Abstract In the topology optimization problem of mechanical structures, the optimization objectives are mainly focused on the compliance minimization, displacement minimization, stress minimization, and so on. However, in practical engineering, these kinds of optimization objectives do not meet all the requirements. Some structures, such as wind turbine blades and engine blades of aircrafts, are required to maintain a superior aerodynamic shape under external loads. This puts a higher requirement on the local deformation homogenization of the structure. Therefore, we proposed a topology optimization method for the minimization of local relative displacement differences considering stress constraints. First, we present a specific topology… More >

  • Open Access

    PROCEEDINGS

    Peridynamic Analysis on Failure of Cantilever Beam Subjected to a Concentrated Force and Uniform Distributed Traction

    Zeyuan Zhou1, Ming Yu1, Zaixing Huang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09135

    Abstract Peridynamics (PD) is a reformulation of the classical continuum mechanics. Its core consists in that a weighted integral of relative displacement over a spatial domain is used instead of the spatial derivative of displacement in governing equations of deformation. Based on an improved technique of exerting traction on boundary surface, an improved peridynamic motion equation has been proposed within the framework of the peridynamic(PD) theory. It is more natural and easier to deal with boundary conditions for the elastic deformation and fracture analysis. Under the enhancement effect in the constructed transfer functions of boundary traction, there is not needed the… More >

  • Open Access

    PROCEEDINGS

    Progressive Failure Analysis of Composite Laminates Subjected to Transverse Loading with Augmented Finite Element Method

    Shu Li1,*, Yan Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09078

    Abstract In this paper, two-dimensional (2D) orthotropic augmented finite element method (A-FEM) is applied to account for progressive failure of composite laminates under transverse loading, which considers all major cracking modes (delamination, fiber kinking/rupture matrix cracking). High-fidelity simulations of different stacking composite laminates under transverse loading are implemented. Both predicted load−deflection curves and damage evolution are in good agreement with that of experimental results, which demonstrates the numerical capability of A-FEM. In addition, the influence of stacking sequence on the failure mechanism is also studied by predicted damage evolution of laminates with different stacking sequence. Results show that the tensile matrix… More >

  • Open Access

    PROCEEDINGS

    Peridynamic Analysis on Thermal-Elastic Deformation of Isotropic Plate with Traction Boundary Condition

    Ming Yu1, Zeyuan Zhou1, Zaixing Huang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09264

    Abstract How to well characterize traction boundary condition is always a difficult problem in peridynamics. In order to solve this problem, an integral term of boundary traction weighted by a tensor-typical transfer function is added to the original peridynamic motion equation, to form the so-called the traction-associated peridynamic motion equation. The traction-associated peridynamic motion equation is proved to be compatible with the conservation laws of linear and angular momentum. The conservation law of energy is also verified to have the same form as the original peridynamics advanced by Silling. Therefore, the constitutive models in the original peridynamics can be directly applied… More >

  • Open Access

    PROCEEDINGS

    Micromechanical Study of Heterogenous Deformation of Austenitic Stainless Steel Welded Joints at Different Temperatures

    Lifeng Gan1, Baoyin Zhu2, Chao Ling1,*, Esteban P. Busso1, Dongfeng Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010397

    Abstract Heat-resistant austenitic stainless steels are widely used in the final stages of superheater and reheater in in the new generation of fossil fuel power stations, due to their high creep strength. Similar weld joints, fabricated using gas tungsten arc welding, for connecting different components made of the heat resistant austenitic stainless steels usually suffer from premature failures at elevated temperature [1]. Experimental studies showed that cracks may nucleate in the heat affected zone or weld metal of the similar welded joints under service conditions. In order to reveal the physical origin of unexpected failures of the weld joints, a microstructure-based… More >

Displaying 1-10 on page 1 of 210. Per Page