Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (49)
  • Open Access

    ARTICLE

    MVLA-Net: A Multi-View Lesion Attention Network for Advanced Diagnosis and Grading of Diabetic Retinopathy

    Tariq Mahmood1,2, Tanzila Saba1, Faten S. Alamri3,*, Alishba Tahir4, Noor Ayesha5

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1173-1193, 2025, DOI:10.32604/cmc.2025.061150 - 26 March 2025

    Abstract Innovation in learning algorithms has made retinal vessel segmentation and automatic grading techniques crucial for clinical diagnosis and prevention of diabetic retinopathy. The traditional methods struggle with accuracy and reliability due to multi-scale variations in retinal blood vessels and the complex pathological relationship in fundus images associated with diabetic retinopathy. While the single-modal diabetic retinopathy grading network addresses class imbalance challenges and lesion representation in fundus image data, dual-modal diabetic retinopathy grading methods offer superior performance. However, the scarcity of dual-modal data and the lack of effective feature fusion methods limit their potential due to… More >

  • Open Access

    ARTICLE

    AMSFuse: Adaptive Multi-Scale Feature Fusion Network for Diabetic Retinopathy Classification

    Chengzhang Zhu1,2, Ahmed Alasri1, Tao Xu3, Yalong Xiao1,2,*, Abdulrahman Noman1, Raeed Alsabri1, Xuanchu Duan4, Monir Abdullah5

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5153-5167, 2025, DOI:10.32604/cmc.2024.058647 - 06 March 2025

    Abstract Globally, diabetic retinopathy (DR) is the primary cause of blindness, affecting millions of people worldwide. This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure prompt diagnosis and effective treatment. Deep learning-based automated diagnosis for diabetic retinopathy can facilitate early detection and treatment. However, traditional deep learning models that focus on local views often learn feature representations that are less discriminative at the semantic level. On the other hand, models that focus on global semantic-level information might overlook critical, subtle local pathological features. To address this issue, we propose an… More >

  • Open Access

    ARTICLE

    Improving Fundus Detection Precision in Diabetic Retinopathy Using Derivative-Based Deep Neural Networks

    Asma Aldrees1, Hong Min2,*, Ashit Kumar Dutta3, Yousef Ibrahim Daradkeh4, Mohd Anjum5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2487-2511, 2025, DOI:10.32604/cmes.2025.061103 - 03 March 2025

    Abstract Fundoscopic diagnosis involves assessing the proper functioning of the eye’s nerves, blood vessels, retinal health, and the impact of diabetes on the optic nerves. Fundus disorders are a major global health concern, affecting millions of people worldwide due to their widespread occurrence. Fundus photography generates machine-based eye images that assist in diagnosing and treating ocular diseases such as diabetic retinopathy. As a result, accurate fundus detection is essential for early diagnosis and effective treatment, helping to prevent severe complications and improve patient outcomes. To address this need, this article introduces a Derivative Model for Fundus… More >

  • Open Access

    ARTICLE

    Deep Learning Empowered Diagnosis of Diabetic Retinopathy

    Mustafa Youldash1, Atta Rahman2,*, Manar Alsayed1, Abrar Sebiany1, Joury Alzayat1, Noor Aljishi1, Ghaida Alshammari1, Mona Alqahtani1

    Intelligent Automation & Soft Computing, Vol.40, pp. 125-143, 2025, DOI:10.32604/iasc.2025.058509 - 23 January 2025

    Abstract Diabetic retinopathy (DR) is a complication of diabetes that can lead to reduced vision or even blindness if left untreated. Therefore, early and accurate detection of this disease is crucial for diabetic patients to prevent vision loss. This study aims to develop a deep-learning approach for the early and precise diagnosis of DR, as manual detection can be time-consuming, costly, and prone to human error. The classification task is divided into two groups for binary classification: patients with DR (diagnoses 1–4) and those without DR (diagnosis 0). For multi-class classification, the categories are no DR,… More >

  • Open Access

    ARTICLE

    A Comprehensive Image Processing Framework for Early Diagnosis of Diabetic Retinopathy

    Kusum Yadav1, Yasser Alharbi1, Eissa Jaber Alreshidi1, Abdulrahman Alreshidi1, Anuj Kumar Jain2, Anurag Jain3, Kamal Kumar4, Sachin Sharma5, Brij B. Gupta6,7,8,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2665-2683, 2024, DOI:10.32604/cmc.2024.053565 - 18 November 2024

    Abstract In today’s world, image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images. Automated analysis of medical images is essential for doctors, as manual investigation often leads to inter-observer variability. This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework. The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization (MIWPSO) and Fuzzy C-Means clustering (FCM) algorithms. Traditional FCM does not incorporate spatial neighborhood features, making More >

  • Open Access

    ARTICLE

    Diabetic Retinopathy Detection: A Hybrid Intelligent Approach

    Atta Rahman1,*, Mustafa Youldash2, Ghaida Alshammari2, Abrar Sebiany2, Joury Alzayat2, Manar Alsayed2, Mona Alqahtani2, Noor Aljishi2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4561-4576, 2024, DOI:10.32604/cmc.2024.055106 - 12 September 2024

    Abstract Diabetes is a serious health condition that can cause several issues in human body organs such as the heart and kidney as well as a serious eye disease called diabetic retinopathy (DR). Early detection and treatment are crucial to prevent complete blindness or partial vision loss. Traditional detection methods, which involve ophthalmologists examining retinal fundus images, are subjective, expensive, and time-consuming. Therefore, this study employs artificial intelligence (AI) technology to perform faster and more accurate binary classifications and determine the presence of DR. In this regard, we employed three promising machine learning models namely, support… More >

  • Open Access

    ARTICLE

    Blueberry anthocyanins extract attenuates oxidative stress and angiogenesis on an in vitro high glucose-induced retinopathy model through the miR-33/GLCCI1 axis

    WENBIN LUO1, YULING ZOU2, HONGXI WU3, ZHONGYI YANG1, ZHIPENG YOU2,*

    BIOCELL, Vol.48, No.8, pp. 1275-1284, 2024, DOI:10.32604/biocell.2024.051045 - 02 August 2024

    Abstract Background: Diabetes retinopathy (DR) is a complication of diabetes that affects patients’ vision. Previous studies have found blueberry anthocyanins extract (BAE) can inhibit the progression of DR, but its mechanism is not completely clear. Methods: To study the role of BAE in diabetes retinopathy, we treated human retinal endothelial cells (HRCECs) with 30 mM high glucose to simulate the microenvironment of diabetes retinopathy and used BAE to intervene the in vitro high glucose-induced retinopathy model. HRCEC cell viability and apoptosis rates were examined by Cell Counting Kit 8 (CCK-8) assay and flow cytometry assay. The binding… More >

  • Open Access

    CORRECTION

    Correction: Diabetic Retinopathy Diagnosis Using Interval Neutrosophic Segmentation with Deep Learning Model

    V. Thanikachalam1,*, M. G. Kavitha2, V. Sivamurugan1

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 857-858, 2024, DOI:10.32604/csse.2024.052484 - 20 May 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Scheme Based on Multi-Level Patch Attention and Lesion Localization for Diabetic Retinopathy Grading

    Zhuoqun Xia1, Hangyu Hu1, Wenjing Li2,3, Qisheng Jiang1, Lan Pu1, Yicong Shu1, Arun Kumar Sangaiah4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 409-430, 2024, DOI:10.32604/cmes.2024.030052 - 16 April 2024

    Abstract Early screening of diabetes retinopathy (DR) plays an important role in preventing irreversible blindness. Existing research has failed to fully explore effective DR lesion information in fundus maps. Besides, traditional attention schemes have not considered the impact of lesion type differences on grading, resulting in unreasonable extraction of important lesion features. Therefore, this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator (MPAG) and a lesion localization module (LLM). Firstly, MPAG is used to predict patches of different sizes and generate a weighted attention map based on the prediction score and… More >

  • Open Access

    ARTICLE

    DeepSVDNet: A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images

    Anas Bilal1, Azhar Imran2, Talha Imtiaz Baig3,4, Xiaowen Liu1,*, Haixia Long1, Abdulkareem Alzahrani5, Muhammad Shafiq6

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 511-528, 2024, DOI:10.32604/csse.2023.039672 - 19 March 2024

    Abstract Artificial Intelligence (AI) is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy (VTDR), which is a leading cause of visual impairment and blindness worldwide. However, previous automated VTDR detection methods have mainly relied on manual feature extraction and classification, leading to errors. This paper proposes a novel VTDR detection and classification model that combines different models through majority voting. Our proposed methodology involves preprocessing, data augmentation, feature extraction, and classification stages. We use a hybrid convolutional neural network-singular value decomposition (CNN-SVD) model for feature extraction and selection and an improved SVM-RBF with a Decision Tree More >

Displaying 1-10 on page 1 of 49. Per Page