Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access

    ARTICLE

    Diabetic Retinopathy Diagnosis Using Interval Neutrosophic Segmentation with Deep Learning Model

    V. Thanikachalam1,*, M. G. Kavitha2, V. Sivamurugan1

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2129-2145, 2023, DOI:10.32604/csse.2023.026527 - 01 August 2022

    Abstract In recent times, Internet of Things (IoT) and Deep Learning (DL) models have revolutionized the diagnostic procedures of Diabetic Retinopathy (DR) in its early stages that can save the patient from vision loss. At the same time, the recent advancements made in Machine Learning (ML) and DL models help in developing Computer Aided Diagnosis (CAD) models for DR recognition and grading. In this background, the current research works designs and develops an IoT-enabled Effective Neutrosophic based Segmentation with Optimal Deep Belief Network (ODBN) model i.e., NS-ODBN model for diagnosis of DR. The presented model involves… More >

  • Open Access

    ARTICLE

    Multilevel Augmentation for Identifying Thin Vessels in Diabetic Retinopathy Using UNET Model

    A. Deepak Kumar1,2,*, T. Sasipraba1

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2273-2288, 2023, DOI:10.32604/iasc.2023.028996 - 19 July 2022

    Abstract Diabetic Retinopathy is a disease, which happens due to abnormal growth of blood vessels that causes spots on the vision and vision loss. Various techniques are applied to identify the disease in the early stage with different methods and parameters. Machine Learning (ML) techniques are used for analyzing the images and finding out the location of the disease. The restriction of the ML is a dataset size, which is used for model evaluation. This problem has been overcome by using an augmentation method by generating larger datasets with multidimensional features. Existing models are using only More >

  • Open Access

    ARTICLE

    Detection and Classification of Hemorrhages in Retinal Images

    Ghassan Ahmed Ali1, Thamer Mitib Ahmad Al Sariera2,*, Muhammad Akram1, Adel Sulaiman1, Fekry Olayah1

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1601-1616, 2023, DOI:10.32604/csse.2023.026119 - 15 June 2022

    Abstract Damage of the blood vessels in retina due to diabetes is called diabetic retinopathy (DR). Hemorrhages is the first clinically visible symptoms of DR. This paper presents a new technique to extract and classify the hemorrhages in fundus images. The normal objects such as blood vessels, fovea and optic disc inside retinal images are masked to distinguish them from hemorrhages. For masking blood vessels, thresholding that separates blood vessels and background intensity followed by a new filter to extract the border of vessels based on orientations of vessels are used. For masking optic disc, the… More >

  • Open Access

    ARTICLE

    IM-EDRD from Retinal Fundus Images Using Multi-Level Classification Techniques

    M. P. Karthikeyan1,*, E. A. Mary Anita2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 567-580, 2023, DOI:10.32604/iasc.2023.026243 - 06 June 2022

    Abstract In recent years, there has been a significant increase in the number of people suffering from eye illnesses, which should be treated as soon as possible in order to avoid blindness. Retinal Fundus images are employed for this purpose, as well as for analysing eye abnormalities and diagnosing eye illnesses. Exudates can be recognised as bright lesions in fundus pictures, which can be the first indicator of diabetic retinopathy. With that in mind, the purpose of this work is to create an Integrated Model for Exudate and Diabetic Retinopathy Diagnosis (IM-EDRD) with multi-level classifications. The… More >

  • Open Access

    ARTICLE

    Evolutionary Intelligence and Deep Learning Enabled Diabetic Retinopathy Classification Model

    Bassam A. Y. Alqaralleh1,*, Fahad Aldhaban1, Anas Abukaraki2, Esam A. AlQaralleh3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 87-101, 2022, DOI:10.32604/cmc.2022.026729 - 18 May 2022

    Abstract Diabetic Retinopathy (DR) has become a widespread illness among diabetics across the globe. Retinal fundus images are generally used by physicians to detect and classify the stages of DR. Since manual examination of DR images is a time-consuming process with the risks of biased results, automated tools using Artificial Intelligence (AI) to diagnose the disease have become essential. In this view, the current study develops an Optimal Deep Learning-enabled Fusion-based Diabetic Retinopathy Detection and Classification (ODL-FDRDC) technique. The intention of the proposed ODL-FDRDC technique is to identify DR and categorize its different grades using retinal More >

  • Open Access

    ARTICLE

    A Novel Optimizer in Deep Neural Network for Diabetic Retinopathy Classification

    Pranamita Nanda1,*, N. Duraipandian2

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1099-1110, 2022, DOI:10.32604/csse.2022.024695 - 09 May 2022

    Abstract In severe cases, diabetic retinopathy can lead to blindness. For decades, automatic classification of diabetic retinopathy images has been a challenge. Medical image processing has benefited from advances in deep learning systems. To enhance the accuracy of image classification driven by Convolutional Neural Network (CNN), balanced dataset is generated by data augmentation method followed by an optimized algorithm. Deep neural networks (DNN) are frequently optimized using gradient (GD) based techniques. Vanishing gradient is the main drawback of GD algorithms. In this paper, we suggest an innovative algorithm, to solve the above problem, Hypergradient Descent learning… More >

  • Open Access

    ARTICLE

    Detection and Classification of Diabetic Retinopathy Using DCNN and BSN Models

    S. Sudha*, A. Srinivasan, T. Gayathri Devi

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 597-609, 2022, DOI:10.32604/cmc.2022.024065 - 24 February 2022

    Abstract Diabetes is associated with many complications that could lead to death. Diabetic retinopathy, a complication of diabetes, is difficult to diagnose and may lead to vision loss. Visual identification of micro features in fundus images for the diagnosis of DR is a complex and challenging task for clinicians. Because clinical testing involves complex procedures and is time-consuming, an automated system would help ophthalmologists to detect DR and administer treatment in a timely manner so that blindness can be avoided. Previous research works have focused on image processing algorithms, or neural networks, or signal processing techniques… More >

  • Open Access

    ARTICLE

    Detection of Diabetic Retinopathy Using Custom CNN to Segment the Lesions

    Saleh Albahli1,2,*, Ghulam Nabi Ahmad Hassan Yar3

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 837-853, 2022, DOI:10.32604/iasc.2022.024427 - 08 February 2022

    Abstract Diabetic retinopathy is an eye deficiency that affects the retina as a result of the patient having Diabetes Mellitus caused by high sugar levels. This condition causes the blood vessels that nourish the retina to swell and become distorted and eventually become blocked. In recent times, images have played a vital role in using convolutional neural networks to automatically detect medical conditions, retinopathy takes this to another level because there is need not for just a system that could determine is a patient has retinopathy, but also a system that could tell the severity of… More >

  • Open Access

    ARTICLE

    Transfer Learning-based Computer-aided Diagnosis System for Predicting Grades of Diabetic Retinopathy

    Qaisar Abbas1,*, Mostafa E. A. Ibrahim1,2, Abdul Rauf Baig1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4573-4590, 2022, DOI:10.32604/cmc.2022.023670 - 14 January 2022

    Abstract Diabetic retinopathy (DR) diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features. This task is very difficult for ophthalmologists and time-consuming. Therefore, many computer-aided diagnosis (CAD) systems were developed to automate this screening process of DR. In this paper, a CAD-DR system is proposed based on preprocessing and a pre-train transfer learning-based convolutional neural network (PCNN) to recognize the five stages of DR through retinal fundus images. To develop this CAD-DR system, a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related… More >

  • Open Access

    ARTICLE

    Diabetic Retinopathy Diagnosis Using ResNet with Fuzzy Rough C-Means Clustering

    R. S. Rajkumar*, A. Grace Selvarani

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 509-521, 2022, DOI:10.32604/csse.2022.021909 - 04 January 2022

    Abstract

    Diabetic Retinopathy (DR) is a vision disease due to the long-term prevalence of Diabetes Mellitus. It affects the retina of the eye and causes severe damage to the vision. If not treated on time it may lead to permanent vision loss in diabetic patients. Today’s development in science has no medication to cure Diabetic Retinopathy. However, if diagnosed at an early stage it can be controlled and permanent vision loss can be avoided. Compared to the diabetic population, experts to diagnose Diabetic Retinopathy are very less in particular to local areas. Hence an automatic computer-aided

    More >

Displaying 21-30 on page 3 of 45. Per Page