Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (90)
  • Open Access

    ARTICLE

    Cybernet Model: A New Deep Learning Model for Cyber DDoS Attacks Detection and Recognition

    Azar Abid Salih1,*, Maiwan Bahjat Abdulrazaq2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1275-1295, 2024, DOI:10.32604/cmc.2023.046101

    Abstract Cyberspace is extremely dynamic, with new attacks arising daily. Protecting cybersecurity controls is vital for network security. Deep Learning (DL) models find widespread use across various fields, with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts. The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns. This study presents novel lightweight DL models, known as Cybernet models, for the detection and recognition of various cyber Distributed Denial of Service (DDoS) attacks. These models were constructed to have a reasonable number… More >

  • Open Access

    ARTICLE

    An Adaptive DDoS Detection and Classification Method in Blockchain Using an Integrated Multi-Models

    Xiulai Li1,2,3,4, Jieren Cheng1,3,*, Chengchun Ruan1,3, Bin Zhang1,3, Xiangyan Tang1,3, Mengzhe Sun5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3265-3288, 2023, DOI:10.32604/cmc.2023.045588

    Abstract With the rising adoption of blockchain technology due to its decentralized, secure, and transparent features, ensuring its resilience against network threats, especially Distributed Denial of Service (DDoS) attacks, is crucial. This research addresses the vulnerability of blockchain systems to DDoS assaults, which undermine their core decentralized characteristics, posing threats to their security and reliability. We have devised a novel adaptive integration technique for the detection and identification of varied DDoS attacks. To ensure the robustness and validity of our approach, a dataset amalgamating multiple DDoS attacks was derived from the CIC-DDoS2019 dataset. Using this, our methodology was applied to detect… More >

  • Open Access

    ARTICLE

    A Stochastic Model to Assess the Epidemiological Impact of Vaccine Booster Doses on COVID-19 and Viral Hepatitis B Co-Dynamics with Real Data

    Andrew Omame1,2,*, Mujahid Abbas3,6, Dumitru Baleanu4,5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2973-3012, 2024, DOI:10.32604/cmes.2023.029681

    Abstract A patient co-infected with COVID-19 and viral hepatitis B can be at more risk of severe complications than the one infected with a single infection. This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19. The model is fitted to real COVID-19 data from Pakistan. The proposed model incorporates logistic growth and saturated incidence functions. Rigorous analyses using the tools of stochastic calculus, are performed to study appropriate conditions for the existence of unique global solutions, stationary distribution in the sense of ergodicity and disease… More >

  • Open Access

    ARTICLE

    Detecting and Mitigating DDOS Attacks in SDNs Using Deep Neural Network

    Gul Nawaz1, Muhammad Junaid1, Adnan Akhunzada2, Abdullah Gani2,*, Shamyla Nawazish3, Asim Yaqub3, Adeel Ahmed1, Huma Ajab4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2157-2178, 2023, DOI:10.32604/cmc.2023.026952

    Abstract Distributed denial of service (DDoS) attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user. We proposed a deep neural network (DNN) model for the detection of DDoS attacks in the Software-Defined Networking (SDN) paradigm. SDN centralizes the control plane and separates it from the data plane. It simplifies a network and eliminates vendor specification of a device. Because of this open nature and centralized control, SDN can easily become a victim of DDoS attacks. We proposed a supervised Developed Deep Neural Network (DDNN) model that can classify the DDoS attack traffic… More >

  • Open Access

    ARTICLE

    Threshold-Based Software-Defined Networking (SDN) Solution for Healthcare Systems against Intrusion Attacks

    Laila M. Halman, Mohammed J. F. Alenazi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1469-1483, 2024, DOI:10.32604/cmes.2023.028077

    Abstract The healthcare sector holds valuable and sensitive data. The amount of this data and the need to handle, exchange, and protect it, has been increasing at a fast pace. Due to their nature, software-defined networks (SDNs) are widely used in healthcare systems, as they ensure effective resource utilization, safety, great network management, and monitoring. In this sector, due to the value of the data, SDNs face a major challenge posed by a wide range of attacks, such as distributed denial of service (DDoS) and probe attacks. These attacks reduce network performance, causing the degradation of different key performance indicators (KPIs)… More > Graphic Abstract

    Threshold-Based Software-Defined Networking (SDN) Solution for Healthcare Systems against Intrusion Attacks

  • Open Access

    ARTICLE

    GMLP-IDS: A Novel Deep Learning-Based Intrusion Detection System for Smart Agriculture

    Abdelwahed Berguiga1,2,*, Ahlem Harchay1,2, Ayman Massaoudi1,2, Mossaad Ben Ayed3, Hafedh Belmabrouk4

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 379-402, 2023, DOI:10.32604/cmc.2023.041667

    Abstract Smart Agriculture, also known as Agricultural 5.0, is expected to be an integral part of our human lives to reduce the cost of agricultural inputs, increasing productivity and improving the quality of the final product. Indeed, the safety and ongoing maintenance of Smart Agriculture from cyber-attacks are vitally important. To provide more comprehensive protection against potential cyber-attacks, this paper proposes a new deep learning-based intrusion detection system for securing Smart Agriculture. The proposed Intrusion Detection System IDS, namely GMLP-IDS, combines the feedforward neural network Multilayer Perceptron (MLP) and the Gaussian Mixture Model (GMM) that can better protect the Smart Agriculture… More >

  • Open Access

    ARTICLE

    Honeypot Game Theory against DoS Attack in UAV Cyber

    Shangting Miao1, Yang Li2,*, Quan Pan2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2745-2762, 2023, DOI:10.32604/cmc.2023.037257

    Abstract A space called Unmanned Aerial Vehicle (UAV) cyber is a new environment where UAV, Ground Control Station (GCS) and business processes are integrated. Denial of service (DoS) attack is a standard network attack method, especially suitable for attacking the UAV cyber. It is a robust security risk for UAV cyber and has recently become an active research area. Game theory is typically used to simulate the existing offensive and defensive mechanisms for DoS attacks in a traditional network. In addition, the honeypot, an effective security vulnerability defense mechanism, has not been widely adopted or modeled for defense against DoS attack… More >

  • Open Access

    ARTICLE

    Multi-Domain Malicious Behavior Knowledge Base Framework for Multi-Type DDoS Behavior Detection

    Ouyang Liu, Kun Li*, Ziwei Yin, Deyun Gao, Huachun Zhou

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2955-2977, 2023, DOI:10.32604/iasc.2023.039995

    Abstract Due to the many types of distributed denial-of-service attacks (DDoS) attacks and the large amount of data generated, it becomes a challenge to manage and apply the malicious behavior knowledge generated by DDoS attacks. We propose a malicious behavior knowledge base framework for DDoS attacks, which completes the construction and application of a multi-domain malicious behavior knowledge base. First, we collected malicious behavior traffic generated by five mainstream DDoS attacks. At the same time, we completed the knowledge collection mechanism through data pre-processing and dataset design. Then, we designed a malicious behavior category graph and malicious behavior structure graph for… More >

  • Open Access

    ARTICLE

    MBB-IoT: Construction and Evaluation of IoT DDoS Traffic Dataset from a New Perspective

    Yi Qing1, Xiangyu Liu2, Yanhui Du2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2095-2119, 2023, DOI:10.32604/cmc.2023.039980

    Abstract Distributed Denial of Service (DDoS) attacks have always been a major concern in the security field. With the release of malware source codes such as BASHLITE and Mirai, Internet of Things (IoT) devices have become the new source of DDoS attacks against many Internet applications. Although there are many datasets in the field of IoT intrusion detection, such as Bot-IoT, Constrained Application Protocol–Denial of Service (CoAP-DoS), and LATAM-DDoS-IoT (some of the names of DDoS datasets), which mainly focus on DDoS attacks, the datasets describing new IoT DDoS attack scenarios are extremely rare, and only N-BaIoT and IoT-23 datasets used IoT… More >

  • Open Access

    PROCEEDINGS

    The Comparisons Between Peridynamic Differential Operators and Nonlocal Differential Operators

    Xingyu Kan1,*, Yiwei Wang1, Jiale Yan2, Renfang Huang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09937

    Abstract Nonlocal differential operators have become an increasingly important tool in the field of numerical modeling and computational science. In recent years, two specific types of nonlocal differential operators have emerged as particularly useful in simulations of material and structural failures, such as fracture and crack propagations in solids. In this paper, the first type of nonlocal operator is based on the nonlocal operator theory in peridynamic theory, which is called PDOs [1,2]. The second type of nonlocal operator is derived from the Taylor series expansion of nonlocal interpolation, which is called NDOs [3-5]. NDOs are usually used to discretize the… More >

Displaying 1-10 on page 1 of 90. Per Page