Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Identification of a dihydroorotate dehydrogenase inhibitor that inhibits cancer cell growth by proteomic profiling

    MAKOTO KAWATANI1,2,*, HARUMI AONO2, SAYOKO HIRANUMA3, TAKESHI SHIMIZU3, MAKOTO MUROI1,2, TOSHIHIKO NOGAWA4, TOMOKAZU OHISHI5, SHUN-ICHI OHBA5, MANABU KAWADA5, KANAMI YAMAZAKI6, SHINGO DAN6, NAOSHI DOHMAE1, HIROYUKI OSADA2,7,*

    Oncology Research, Vol.31, No.6, pp. 833-844, 2023, DOI:10.32604/or.2023.030241

    Abstract Dihydroorotate dehydrogenase (DHODH) is a central enzyme of the de novo pyrimidine biosynthesis pathway and is a promising drug target for the treatment of cancer and autoimmune diseases. This study presents the identification of a potent DHODH inhibitor by proteomic profiling. Cell-based screening revealed that NPD723, which is reduced to H-006 in cells, strongly induces myeloid differentiation and inhibits cell growth in HL-60 cells. H-006 also suppressed the growth of various cancer cells. Proteomic profiling of NPD723-treated cells in ChemProteoBase showed that NPD723 was clustered with DHODH inhibitors. H-006 potently inhibited human DHODH activity in vitro, whereas NPD723 was approximately… More >

  • Open Access

    REVIEW

    Network biology: A promising approach for drug target identification against neurodevelopmental disorders

    WAYEZ NAQVI, ANANYA SINGH, PREKSHI GARG, PRACHI SRIVASTAVA*

    BIOCELL, Vol.47, No.8, pp. 1675-1687, 2023, DOI:10.32604/biocell.2023.029624

    Abstract Biological entities are involved in complicated and complex connections; hence, discovering biological information using network biology ideas is critical. In the past few years, network biology has emerged as an integrative and systems-level approach for understanding and interpreting these complex interactions. Biological network analysis is one method for reducing enormous data sets to clinically useful knowledge for disease diagnosis, prognosis, and treatment. The network of biological entities can help us predict drug targets for several diseases. The drug targets identified through the systems biology approach help in targeting the essential biological pathways that contribute to the progression and development of… More >

  • Open Access

    ARTICLE

    A novel prognostic gene signature, nomogram and immune landscape based on tanshinone IIA drug targets for hepatocellular carcinoma: Comprehensive bioinformatics analysis and in vitro experiments

    BOWEN PENG1, YUN GE1, GANG YIN2,3,*

    BIOCELL, Vol.47, No.7, pp. 1519-1535, 2023, DOI:10.32604/biocell.2023.027026

    Abstract Background: Tanshinone IIA, one of the main ingredients of Danshen, is used to treat hepatocellular carcinoma (HCC). However, potential targets of the molecule in the therapy of HCC are unknown. Methods: In this study, we collected the tanshinone IIA targets from public databases for investigation. We screened differentially expressed genes (DEGs) across HCC and normal tissues using mRNA expression profiles from The Cancer Genome Atlas (TCGA). Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) Cox regression models were used to identify and construct the prognostic gene signature. Results: Finally, we discovered common genes across tanshinone IIA… More >

  • Open Access

    REVIEW

    Transcriptional factor RUNX1: A potential therapeutic target for fibrotic pulmonary disease

    JIA LIU1,2,#, FAPING WANG1,2,#, BO YUAN3, FENGMING LUO1,2,*

    BIOCELL, Vol.47, No.4, pp. 697-705, 2023, DOI:10.32604/biocell.2023.026148

    Abstract Runt-related transcription factor-1 (RUNX1), also known as the core-binding factor alpha 2 subunit, is closely related to human leukemia. The functions of RUNX1 in modulating cell proliferation, differentiation, and survival in multiple systems have been gradually discovered with the emergence of transgenic mice. RUNX1 is a powerful transcription factor implicated in diverse signaling pathways and cellular mechanisms that participate in lung development and pulmonary diseases. RUNX1 has recently been identified as a target regulator of fibrotic remodeling diseases, particularly in the kidney. However, the role of RUNX1 in pulmonary fibrosis is unclear. Pulmonary fibrosis is characterized by obscure nosogenesis, limited… More >

  • Open Access

    REVIEW

    Utilization of kinase inhibitors as novel therapeutic drug targets: A review

    SUCHITRA NISHAL1, VIKAS JHAWAT1,*, SUMEET GUPTA2, PARMITA PHAUGAT1

    Oncology Research, Vol.30, No.5, pp. 221-230, 2022, DOI:10.32604/or.2022.027549

    Abstract Kinase inhibitors are a significant and continuously developing division of target therapeutics. The drug discovery and improvement efforts have examined numerous attempts to target the signaling pathway of kinases. The Kinase inhibitors have been heralded as a game-changer in cancer treatment. For developing kinase inhibitors as a treatment for various non-malignant disorders like auto-immune diseases, is currently undergoing extensive research. It may be beneficial to investigate whether cell-specific kinase inhibitor administration enhances therapeutic efficacy and decreases adverse effects. The goal of the current review is to gain insight into the role of kinase inhibitors in facilitating effective target drug delivery… More >

  • Open Access

    ARTICLE

    Drug–Target Interaction Prediction Model Using Optimal Recurrent Neural Network

    G. Kavipriya*, D. Manjula

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1675-1689, 2023, DOI:10.32604/iasc.2023.027670

    Abstract Drug-target interactions prediction (DTIP) remains an important requirement in the field of drug discovery and human medicine. The identification of interaction among the drug compound and target protein plays an essential process in the drug discovery process. It is a lengthier and complex process for predicting the drug target interaction (DTI) utilizing experimental approaches. To resolve these issues, computational intelligence based DTIP techniques were developed to offer an efficient predictive model with low cost. The recently developed deep learning (DL) models can be employed for the design of effective predictive approaches for DTIP. With this motivation, this paper presents a… More >

  • Open Access

    ARTICLE

    An Intelligent Prediction Model for Target Protein Identification in Hepatic Carcinoma Using Novel Graph Theory and ANN Model

    G. Naveen Sundar1, Stalin Selvaraj2, D. Narmadha1, K. Martin Sagayam3, A. Amir Anton Jone3, Ayman A. Aly4, Dac-Nhuong Le5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.1, pp. 31-46, 2022, DOI:10.32604/cmes.2022.019914

    Abstract Hepatocellular carcinoma (HCC) is one major cause of cancer-related mortality around the world. However, at advanced stages of HCC, systematic treatment options are currently limited. As a result, new pharmacological targets must be discovered regularly, and then tailored medicines against HCC must be developed. In this research, we used biomarkers of HCC to collect the protein interaction network related to HCC. Initially, DC (Degree Centrality) was employed to assess the importance of each protein. Then an improved Graph Coloring algorithm was used to rank the target proteins according to the interaction with the primary target protein after assessing the top… More >

  • Open Access

    REVIEW

    Applications of CRISPR-Cas System in Tumor Biology

    Mengdan Ma1,2, Yuchen Liu1,*, Weiren Huang1,*

    Oncologie, Vol.23, No.4, pp. 463-492, 2021, DOI:10.32604/oncologie.2022.019415

    Abstract The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system, which is an RNA-guided nuclease system, plays an important role in the adaptive immune response of bacteria, and it is a rapidly developing gene editing technology. It has been widely used in a variety of cells, microorganisms, plants, and animals. This technique has helped to overcome the limitations of previous gene editing methods, and it has promoted the development of synthetic biology, genetics, and proteomics. The ability of the CRISPR-Cas system to modify the genetic components of a system has led to various practical applications, such as base editing, transcription regulation,… More >

  • Open Access

    ABSTRACT

    in silico Method for the Identification of Mycobacterial sp. Potential Drug Targets

    Ashutosh Singh1, Shruti Mishra2, Dhwani Raghav1, Asheesh shanker1, Vinay Sharma1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.2, pp. 119-124, 2008, DOI:10.3970/icces.2008.006.119

    Abstract Drug resistance has increased the pace of war against the ever-growing challenge of mycobacterial infections particularly with the growing menace of tuberculosis (TB).Previous studies reported several essential and virulent genes of mycobacterium like virS gene and mymA operon[1] through experimental approaches. However, Post genomic approach applied for the identification of targets for tuberculosis which includes the comparison of Mycobacterium tuberculosis CDC1551 proteome against database of essential genes and proteome of Homo sapiens. A total of approx 4000 proteins were studied and compared and 19 proteins were found to possess potentiality to call as Targets. More >

Displaying 1-10 on page 1 of 9. Per Page