Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (591)
  • Open Access

    ARTICLE

    Flow Breakdown of Hybrid Nanofluid on a Rigid Surface with Power Law Fluid as Lubricated Layers

    Mirza Naveed Jahangeer Baig1, Nadeem Salamat1, Sohail Nadeem2,3,*, Naeem Ullah2, Mohamed Bechir Ben Hamida4,5,6, Hassan Ali Ghazwani7, Sayed M. Eldin8, A. S. Al-Shafay9

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1485-1499, 2024, DOI:10.32604/cmes.2023.029351

    Abstract This work investigates an oblique stagnation point flow of hybrid nanofluid over a rigid surface with power law fluid as lubricated layers. Copper (Cu) and Silver (Ag) solid particles are used as hybrid particles acting in water H2O as a base fluid. The mathematical formulation of flow configuration is presented in terms of differential system that is nonlinear in nature. The thermal aspects of the flow field are also investigated by assuming the surface is a heated surface with a constant temperature T. Numerical solutions to the governing mathematical model are calculated by the RK45 algorithm. The results based on… More >

  • Open Access

    ARTICLE

    The Effect of Lateral Offset Distance on the Aerodynamics and Fuel Economy of Vehicle Queues

    Lili Lei*, Ze Li, Haichao Zhou, Jing Wang, Wei Lin

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 147-163, 2024, DOI:10.32604/fdmp.2023.030158

    Abstract The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies. In recent years, vehicle intelligence has progressed considerably, and researchers are currently trying to take advantage of these developments. Here we consider the case of many vehicles forming a queue, i.e., vehicles traveling at a predetermined speed and distance apart. While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing, vehicle speed, and the number of vehicles on aerodynamic drag and fuel economy, this study considers the lateral offset distance of the vehicle queue. The group fuel consumption… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Investigation on the Aerodynamic Characteristics of High-Speed Pantographs with Supporting Beam Wind Deflectors

    Shiyang Song1,*, Tongxin Han2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 127-145, 2024, DOI:10.32604/fdmp.2023.030137

    Abstract Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips, which exacerbates wear and affects the current collection performance of the pantograph-catenary system, a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics (CFD) simulations. The results demonstrate that the size, position, and installation orientation of the wind deflectors significantly influence the amount of force compensation. They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards, thereby forming a “π” shape. Moreover, the lift force compensation provided by the wind… More >

  • Open Access

    ARTICLE

    Analysis of CH4 and H2 Adsorption on Heterogeneous Shale Surfaces Using a Molecular Dynamics Approach

    Surajudeen Sikiru1,*, Hassan Soleimani2, Amir Rostami1, Mohammed Falalu Hamza1,3, Lukmon Owolabi Afolabi4

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 31-44, 2024, DOI:10.32604/fdmp.2023.029281

    Abstract Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies. Difficulties essentially stem from the need to create a realistic shale structure model in terms of mineral heterogeneity and multiplicity. Moreover, precise characterization of the competitive adsorption of hydrogen and methane in shale generally requires the experimental determination of the related adsorptive capacity. In this study, the adsorption of adsorbates, methane (CH4), and hydrogen (H2) on heterogeneous shale surface models of Kaolinite, Orthoclase, Muscovite, Mica, C60, and Butane has been simulated in the frame of a molecular dynamic’s numerical technique. The results show that… More >

  • Open Access

    ARTICLE

    CFD Study on Hemodynamic Characteristics of Inferior Vena Cava Filter Affected by Blood Vessel Diameter

    Shiyue Zhang1, Xue Song1,2, Jingying Wang1,*, Wen Huang3,*, Yue Zhou4, Mingrui Li1

    Molecular & Cellular Biomechanics, Vol.20, No.2, pp. 81-94, 2023, DOI:10.32604/mcb.2023.044445

    Abstract Pulmonary embolism (PE), caused by deep venous thrombosis (DVT), is a disease with high morbidity and mortality. Implantation of inferior vena cava filters is an important method for the clinical prevention of PE. The hemodynamic characteristics of filters implanted in the inferior vena cava (IVC) have a significant impact on their performance. However, IVC diameters vary among patients. This may have a direct impact on the hemodynamic properties of the filter. At present, there is no research on this kind of problem to be investigated. In this paper, the hemodynamic properties of the VenaTech convertible filter were simulated in three… More > Graphic Abstract

    CFD Study on Hemodynamic Characteristics of Inferior Vena Cava Filter Affected by Blood Vessel Diameter

  • Open Access

    ARTICLE

    Simulation of Moving Bed Erosion Based on the Weakly Compressible Smoothed Particle Hydrodynamics-Discrete Element Coupling Method

    Qingyun Zeng1,2, Mingxin Zheng1,*, Dan Huang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 2981-3005, 2023, DOI:10.32604/fdmp.2023.029427

    Abstract A complex interface exists between water flow and solid particles during hydraulic soil erosion. In this study, the particle discrete element method (DEM) has been used to simulate the hydraulic erosion of a granular soil under moving bed conditions and surrounding terrain changes. Moreover, the weakly compressible smoothed particle hydrodynamics (WCSPH) approach has been exploited to simulate the instability process of the free surface fluid and its propagation characteristics at the solid–liquid interface. The influence of a suspended medium on the water flow dynamics has been characterized using the mixed viscosity concept accounting for the solid–liquid mixed particle volume ratio.… More > Graphic Abstract

    Simulation of Moving Bed Erosion Based on the Weakly Compressible Smoothed Particle Hydrodynamics-Discrete Element Coupling Method

  • Open Access

    ARTICLE

    Time Highlighted Multi-Interest Network for Sequential Recommendation

    Jiayi Ma, Tianhao Sun*, Xiaodong Zhang

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3569-3584, 2023, DOI:10.32604/cmc.2023.040005

    Abstract Sequential recommendation based on a multi-interest framework aims to analyze different aspects of interest based on historical interactions and generate predictions of a user’s potential interest in a list of items. Most existing methods only focus on what are the multiple interests behind interactions but neglect the evolution of user interests over time. To explore the impact of temporal dynamics on interest extraction, this paper explicitly models the timestamp with a multi-interest network and proposes a time-highlighted network to learn user preferences, which considers not only the interests at different moments but also the possible trends of interest over time.… More >

  • Open Access

    ARTICLE

    CFD-Based Optimization of a Shell-and-Tube Heat Exchanger

    Juanjuan Wang*, Jiangping Nan, Yanan Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2761-2775, 2023, DOI:10.32604/fdmp.2023.021175

    Abstract The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger (STHE). In order to do so, a simulation model is introduced that takes into account the related gas-phase circulation. Then, simulation verification experiments are designed in order to validate the model. The results show that the temperature field undergoes strong variations in time when an inlet wind speed of 6 m/s is considered, while the heat transfer error reaches a minimum of 5.1%. For an inlet velocity of 9 m/s, the heat transfer drops to the lowest point, while the heat transfer error reaches a… More >

  • Open Access

    PROCEEDINGS

    Ion dynamics and Manipulation Under Extreme Confinement

    Yahui Xue1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09724

    Abstract Ion dynamics and precise control in nanochannels play key roles in biological systems, energy conversation, and environmental engineering. However, the mechanics behaviors of ions and their manipulation mechanism under extreme confinement remain largely unexplored. Biological ion channels acting as life’s transistors can gate simultaneously fast and selective ion transport through atomic-scale filters to maintain vital life functions. This biological inspiration motivates the quest for artificial structures with simultaneous functions of ion selectivity, fast transport and electrical gating at the atomic scale. Here, we experimentally investigate the ion dynamics and electrical manipulation in graphene channels of 3 angstrom size and report… More >

  • Open Access

    PROCEEDINGS

    The Mechanical Property of 2D Materials and Potential Application in Gas Separation

    Dong Li1,*, Yonggang Zheng1, Hongwu Zhang1, Hongfei Ye1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09714

    Abstract The family of 2D transition-metal oxides and dichalcogenides with 1H phase (1H-MX2) has sparked great interest from the perspective of basic physics and applied science. Interestingly, their performances could be further regulated and improved through strain engineering. Effective regulation is founded on a wellunderstood mechanical performance, however, the large number of 1H-MX2 materials has not yet been revealed. Here, a general theoretical model is constructed based on the molecular mechanics, which provides an effective and rapid analytical algorithm for evaluating the mechanical properties of the entire family of 1H-MX2. The validity of the constructed model is verified by molecular dynamics… More >

Displaying 51-60 on page 6 of 591. Per Page