Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    3D Model Occlusion Culling Optimization Method Based on WebGPU Computing Pipeline

    Liming Ye1,2, Gang Liu1,2,3,4,*, Genshen Chen1,2, Kang Li1,2, Qiyu Chen1,2,3, Wenyao Fan1,2, Junjie Zhang1,2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2529-2545, 2023, DOI:10.32604/csse.2023.041488

    Abstract Nowadays, Web browsers have become an important carrier of 3D model visualization because of their convenience and portability. During the process of large-scale 3D model visualization based on Web scenes with the problems of slow rendering speed and low FPS (Frames Per Second), occlusion culling, as an important method for rendering optimization, can remove most of the occluded objects and improve rendering efficiency. The traditional occlusion culling algorithm (TOCA) is calculated by traversing all objects in the scene, which involves a large amount of repeated calculation and time consumption. To advance the rendering process and… More >

  • Open Access

    ARTICLE

    Single Band EBG Antenna for Wireless Power Transfer Applications

    A. M. Almohaimeed1, El Amjed Hajlaoui1,2,*, Ziyad M. Almohaimeed1

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1409-1417, 2023, DOI:10.32604/csse.2023.025738

    Abstract This work demonstrates the design of a single band Electromagnetic Band Gap (EBG) antenna by employing an open stub EBG microstrip of a patch antenna for better achievements in terms of its performance to be utilized in a reconfigurable harvester to operate over a wide input power range. The EBG antenna has been used to gather RF energy and a FET-transistor has been obtainable to determine and control the power flow with the intention to operate at the same time for a different level of input power. The measured data of the EBG antenna shows… More >

  • Open Access

    ARTICLE

    Resonator Rectenna Design Based on Metamaterials for Low-RF Energy Harvesting

    Watcharaphon Naktong1, Amnoiy Ruengwaree1,*, Nuchanart Fhafhiem2, Piyaporn Krachodnok3

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1731-1750, 2021, DOI:10.32604/cmc.2021.015843

    Abstract In this paper, the design of a resonator rectenna, based on metamaterials and capable of harvesting radio-frequency energy at 2.45 GHz to power any low-power devices, is presented. The proposed design uses a simple and inexpensive circuit consisting of a microstrip patch antenna with a mushroom-like electromagnetic band gap (EBG), partially reflective surface (PRS) structure, rectifier circuit, voltage multiplier circuit, and 2.45 GHz Wi-Fi module. The mushroom-like EBG sheet was fabricated on an FR4 substrate surrounding the conventional patch antenna to suppress surface waves so as to enhance the antenna performance. Furthermore, the antenna performance More >

  • Open Access

    ARTICLE

    Design and Performance Comparison of Rotated Y-Shaped Antenna Using Different Metamaterial Surfaces for 5G Mobile Devices

    Jalal Khan1, Daniyal Ali Sehrai1, Mushtaq Ahmad Khan1, Haseeb Ahmad Khan2, Salman Ahmad3, Arslan Ali4, Arslan Arif5, Anwer Ahmad Memon6, Sahib Khan1,4,*

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 409-420, 2019, DOI:10.32604/cmc.2019.06883

    Abstract In this paper, a rotated Y-shaped antenna is designed and compared in terms of performance using a conventional and EBG ground planes for future Fifth Generation (5G) cellular communication system. The rotated Y-shaped antenna is designed to transmit at 38 GHz which is one of the most prominent candidate bands for future 5G communication systems. In the design of conventional antenna and metamaterial surfaces (mushroom, slotted), Rogers-5880 substrate having relative permittivity, thickness and loss tangent of 2.2, 0.254 mm, and 0.0009 respectively have been used. The conventional rotated Y-shaped antenna offers a satisfactory wider bandwidth… More >

  • Open Access

    ARTICLE

    Automated Synthesis of Wideband Bandpass Filters Based on Slow-wave EBG Structures

    Marco Orellana1, Jordi Selga1, Paris Vélez1, Marc Sans1, Ana Rodríguez2, Vicente Boria2, Ferran Martín1

    CMC-Computers, Materials & Continua, Vol.52, No.3, pp. 159-174, 2016, DOI:10.3970/cmc.2016.052.157

    Abstract This paper is focused on the automated synthesis of wideband bandpass filters operating at microwave frequencies and based on electromagnetic bandgap (EBG) structures. The classical counterpart of such filter consists of a combination of transmission line sections and shunt-connected grounded stubs placed at equidistant positions. By replacing the transmission line sections with capacitively-loaded lines (a kind of EBG-based lines) exhibiting the same phase shift at the lower cutoff frequency and the same characteristic (actually Bloch) impedance, filter size is reduced and the spurious pass bands can be efficiently suppressed. In practice, the loading capacitances are… More >

Displaying 1-10 on page 1 of 5. Per Page