Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    Calibration and Reliability Analysis of Eccentric Compressive Concrete Column with High Strength Rebars

    Baojun Qin1,2, Hong Jiang1,2,3, Wei Zhang4, Xiang Liu4,*

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1203-1220, 2025, DOI:10.32604/sdhm.2025.063813 - 05 September 2025

    Abstract The utilization of high-strength steel bars (HSSB) within concrete structures demonstrates significant advantages in material conservation and mechanical performance enhancement. Nevertheless, existing design codes exhibit limitations in addressing the distinct statistical characteristics of HSSB, particularly regarding strength design parameters. For instance, GB50010-2010 fails to specify design strength values for reinforcement exceeding 600 MPa, creating technical barriers for advancing HSSB implementation. This study systematically investigates the reliability of eccentric compression concrete columns reinforced with 600 MPa-grade HSSB through high-order moment method analysis. Material partial factors were calibrated against target reliability indices prescribed by GB50068-2018, incorporating critical More >

  • Open Access

    ARTICLE

    IECC-SAIN: Innovative ECC-Based Approach for Secure Authentication in IoT Networks

    Younes Lahraoui1, Jihane Jebrane2, Youssef Amal1, Saiida Lazaar1, Cheng-Chi Lee3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 615-641, 2025, DOI:10.32604/cmes.2025.067778 - 31 July 2025

    Abstract Due to their resource constraints, Internet of Things (IoT) devices require authentication mechanisms that are both secure and efficient. Elliptic curve cryptography (ECC) meets these needs by providing strong security with shorter key lengths, which significantly reduces the computational overhead required for authentication algorithms. This paper introduces a novel ECC-based IoT authentication system utilizing our previously proposed efficient mapping and reverse mapping operations on elliptic curves over prime fields. By reducing reliance on costly point multiplication, the proposed algorithm significantly improves execution time, storage requirements, and communication cost across varying security levels. The proposed authentication… More >

  • Open Access

    ARTICLE

    Improving Smart Home Security via MQTT: Maximizing Data Privacy and Device Authentication Using Elliptic Curve Cryptography

    Zainatul Yushaniza Mohamed Yusoff1, Mohamad Khairi Ishak2,*, Lukman A. B. Rahim3, Mohd Shahrimie Mohd Asaari1

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1669-1697, 2024, DOI:10.32604/csse.2024.056741 - 22 November 2024

    Abstract The rapid adoption of Internet of Things (IoT) technologies has introduced significant security challenges across the physical, network, and application layers, particularly with the widespread use of the Message Queue Telemetry Transport (MQTT) protocol, which, while efficient in bandwidth consumption, lacks inherent security features, making it vulnerable to various cyber threats. This research addresses these challenges by presenting a secure, lightweight communication proxy that enhances the scalability and security of MQTT-based Internet of Things (IoT) networks. The proposed solution builds upon the Dang-Scheme, a mutual authentication protocol designed explicitly for resource-constrained environments and enhances it… More >

  • Open Access

    ARTICLE

    Message Verification Protocol Based on Bilinear Pairings and Elliptic Curves for Enhanced Security in Vehicular Ad Hoc Networks

    Vincent Omollo Nyangaresi1,2, Arkan A. Ghaib3, Hend Muslim Jasim4, Zaid Ameen Abduljabbar4,5,6,*, Junchao Ma5,*, Mustafa A. Al Sibahee7,8, Abdulla J. Y. Aldarwish4, Ali Hasan Ali9,10, Husam A. Neamah11

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1029-1057, 2024, DOI:10.32604/cmc.2024.053854 - 15 October 2024

    Abstract Vehicular ad hoc networks (VANETs) provide intelligent navigation and efficient route management, resulting in time savings and cost reductions in the transportation sector. However, the exchange of beacons and messages over public channels among vehicles and roadside units renders these networks vulnerable to numerous attacks and privacy violations. To address these challenges, several privacy and security preservation protocols based on blockchain and public key cryptography have been proposed recently. However, most of these schemes are limited by a long execution time and massive communication costs, which make them inefficient for on-board units (OBUs). Additionally, some… More >

  • Open Access

    ARTICLE

    Design of an Efficient and Provable Secure Key Exchange Protocol for HTTP Cookies

    Waseem Akram1, Khalid Mahmood2, Hafiz Burhan ul Haq3, Muhammad Asif3, Shehzad Ashraf Chaudhry4,5, Taeshik Shon6,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 263-280, 2024, DOI:10.32604/cmc.2024.052405 - 18 July 2024

    Abstract Cookies are considered a fundamental means of web application services for authenticating various Hypertext Transfer Protocol (HTTP) requests and maintains the states of clients’ information over the Internet. HTTP cookies are exploited to carry client patterns observed by a website. These client patterns facilitate the particular client’s future visit to the corresponding website. However, security and privacy are the primary concerns owing to the value of information over public channels and the storage of client information on the browser. Several protocols have been introduced that maintain HTTP cookies, but many of those fail to achieve More >

  • Open Access

    ARTICLE

    Design and Performance Analysis of HMDV Dynamic Inertial Suspension Based on Active Disturbance Rejection Control

    Xiaofeng Yang1,3,4, Wei Wang1,3,4,*, Yujie Shen2,4, Changning Liu1,3,4, Tianyi Zhang1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1485-1506, 2024, DOI:10.32604/cmes.2024.049837 - 20 May 2024

    Abstract This paper addresses the impact of vertical vibration negative effects, unbalanced radial forces generated by the static eccentricity of the hub motor, and road excitation on the suspension performance of Hub Motor Driven Vehicle (HMDV). A dynamic inertial suspension based on Active Disturbance Rejection Control (ADRC) is proposed, combining the vertical dynamic characteristics of dynamic inertial suspension with the features of ADRC, which distinguishes between internal and external disturbances and arranges the transition process. Firstly, a simulation model of the static eccentricity of the hub motor is established to simulate the unbalanced radial electromagnetic force… More > Graphic Abstract

    Design and Performance Analysis of HMDV Dynamic Inertial Suspension Based on Active Disturbance Rejection Control

  • Open Access

    ARTICLE

    A Novel Eccentric Intrusion Detection Model Based on Recurrent Neural Networks with Leveraging LSTM

    Navaneetha Krishnan Muthunambu1, Senthil Prabakaran2, Balasubramanian Prabhu Kavin3, Kishore Senthil Siruvangur4, Kavitha Chinnadurai1, Jehad Ali5,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3089-3127, 2024, DOI:10.32604/cmc.2023.043172 - 26 March 2024

    Abstract The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet. Regrettably, this development has expanded the potential targets that hackers might exploit. Without adequate safeguards, data transmitted on the internet is significantly more susceptible to unauthorized access, theft, or alteration. The identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious attacks. This research paper introduces a novel intrusion detection framework that utilizes Recurrent… More >

  • Open Access

    ARTICLE

    Improved Data Stream Clustering Method: Incorporating KD-Tree for Typicality and Eccentricity-Based Approach

    Dayu Xu1,#, Jiaming Lü1,#, Xuyao Zhang2, Hongtao Zhang1,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2557-2573, 2024, DOI:10.32604/cmc.2024.045932 - 27 February 2024

    Abstract Data stream clustering is integral to contemporary big data applications. However, addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research. This paper aims to elevate the efficiency and precision of data stream clustering, leveraging the TEDA (Typicality and Eccentricity Data Analysis) algorithm as a foundation, we introduce improvements by integrating a nearest neighbor search algorithm to enhance both the efficiency and accuracy of the algorithm. The original TEDA algorithm, grounded in the concept of “Typicality and Eccentricity Data Analytics”, represents an evolving and recursive method that requires… More >

  • Open Access

    ARTICLE

    Tensile Strain Capacity Prediction of Engineered Cementitious Composites (ECC) Using Soft Computing Techniques

    Rabar H. Faraj1,*, Hemn Unis Ahmed2,3, Hardi Saadullah Fathullah4, Alan Saeed Abdulrahman2, Farid Abed5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2925-2954, 2024, DOI:10.32604/cmes.2023.029392 - 15 December 2023

    Abstract Plain concrete is strong in compression but brittle in tension, having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures, even when steel reinforcing is present. In order to address these challenges, short polymer fibers are randomly dispersed in a cement-based matrix to form a highly ductile engineered cementitious composite (ECC). This material exhibits high ductility under tensile forces, with its tensile strain being several hundred times greater than conventional concrete. Since concrete is inherently weak in tension, the tensile strain capacity (TSC) has become one of the most… More >

  • Open Access

    ARTICLE

    Can PAPE-Induced Increases in Jump Height Be Explained by Jumping Kinematics?

    Xiaojie Jiang1, Xin Li1, Yining Xu1, Dong Sun1, Julien S. Baker2, Yaodong Gu1,3,*

    Molecular & Cellular Biomechanics, Vol.20, No.2, pp. 67-79, 2023, DOI:10.32604/mcb.2023.042910 - 01 November 2023

    Abstract

    The aim of this study was to investigate whether kinematic data during a countermovement jump (CMJ) could explain the post-activation performance enhancement (PAPE) effects following acute resistance exercise. Twenty-four male participants with resistance training and jumping experience were recruited and randomly assigned to either the experimental group (PAPE-stimulus) (n = 12) or the control group (n = 12). In the experimental group, participants performed 5 reps of squats at 80% 1RM to induce PAPE, while the control group received no intervention. Both groups performed three CMJ tests before (PRE) and at immediate (POST0), 4 (POST4), 8

    More > Graphic Abstract

    Can PAPE-Induced Increases in Jump Height Be Explained by Jumping Kinematics?

Displaying 1-10 on page 1 of 42. Per Page